0000000000208109

AUTHOR

Edgars K. Vasermanis

Optimal airline seat inventory control for multi‐leg flights

Airline seat inventory control is about “selling the right seats to the right people at the right time”. In this paper, the problem of determining optimal booking policy for multiple fare classes in a pool of identical seats for multi‐leg flights is considered. During the time prior to departure of a multi‐leg flight, decisions must be made concerning the allocation of reserved seats to passengers requesting space on the full or partial spans of the flight. It will be noted that in the case of multi‐leg flights the long‐haul passengers are often unable to obtain seats because the shorter‐haul passengers block them. For large commercial airlines, efficiently setting and updating seat allocat…

research product

Adaptive dual control in one biomedical problem

In this paper, the following biomedical problem is considered. People are subjected to a certain chemotherapeutic treatment. The optimal dosage is the maximal dose for which an individual patient will have toxicity level that does not cross the allowable limit. We discuss sequential procedures for searching the optimal dosage, which are based on the concept of dual control and the principle of optimality. According to the dual control theory, the control has two purposes that might be conflicting: one is to help learning about unknown parameters and/or the state of the system (estimation); the other is to achieve the control objective. Thus the resulting control sequence exhibits the closed…

research product

Statistical validation of simulation models of observable systems

In this paper, for validating computer simulation models of real, observable systems, an uniformly most powerful invariant (UMPI) test is developed from the generalized maximum likelihood ratio (GMLR). This test can be considered as a result of a new approach to solving the Behrens‐Fisher problem when covariance matrices of two multivariate normal populations (compared with respect to their means) are different and unknown. The test is based on invariant statistic whose distribution, under the null hypothesis, does not depend on the unknown (nuisance) parameters. The sample size and threshold of the UMPI test are determined from minimization of the weighted sum of the model builder's risk a…

research product

Effective state estimation of stochastic systems

In the present paper, for constructing the minimum risk estimators of state of stochastic systems, a new technique of invariant embedding of sample statistics in a loss function is proposed. This technique represents a simple and computationally attractive statistical method based on the constructive use of the invariance principle in mathematical statistics. Unlike the Bayesian approach, an invariant embedding technique is independent of the choice of priors. It allows one to eliminate unknown parameters from the problem and to find the best invariant estimator, which has smaller risk than any of the well‐known estimators. There exists a class of control systems where observations are not …

research product

OPTIMAL AIRLINE SEAT INVENTORY CONTROL FOR MULTI-LEG FLIGHTS

Abstract For large commercial airlines, efficiently setting and updating seat allocation targets for each passenger category on each multi-leg flight is an extremely difficult problem. This paper presents static and dynamic models of airline seat inventory control for multi-leg flights with multiple fare classes, which allow one to maximize an expected contribution to profit. The dynamic model uses the most recent demand and capacity information and allows one to allocate seats dynamically and anticipatory over time.

research product