0000000000208137
AUTHOR
Cédric Lorcé
Light-front transverse charge densities
We discuss the recent interpretation of quark-distribution functions in the plane transverse to the light-cone direction. Such a mapping is model independent and allows one to build up multidimensional pictures of the hadron and to develop a semi-classical interpretation of the quark dynamics. We comment briefly the results obtained from the form factors of the nucleon. We show that a generalization to a target with arbitrary spin leads to a set of preferred values for the electromagnetic coupling characterizing structureless particles. Finally, we present the Wigner distribution for an unpolarized quark in an unpolarized proton and we propose an interpretation of the observed distortion as…
Light-Front Interpretation of Proton Generalized Polarizabilities
We extend the recently developed formalism to extract light-front quark charge densities from nucleon form factor data to the deformations of these quark charge densities when applying an external electric field. We show that the resulting induced polarizations can be extracted from proton generalized polarizabilities. The available data for the generalized electric polarizabilitiy of the proton yield a pronounced structure in its induced polarization at large transverse distances, which will be pinned down by forthcoming high precision virtual Compton scattering experiments.
Tensor charges of light baryons in the Infinite Momentum Frame
We have used the Chiral-Quark Soliton Model formulated in the Infinite Momentum Frame to investigate the octet, decuplet and antidecuplet tensor charges up to the 5Q level. Using flavor SU(3) symmetry we have obtained for the proton $\delta u=1.172$ and $\delta d=-0.315$ in fair agreement previous model estimations. The 5Q allowed us to estimate also the strange contribution to the proton tensor charge $\delta s=-0.011$. All those values have been obtained at the model scale Q^2=0.36 GeV^2.
On the Origin of Model Relations among Transverse-Momentum Dependent Parton Distributions
Transverse-momentum dependent parton distributions (TMDs) are studied in the framework of quark models. In particular, quark-model relations among TMDs are reviewed, elucidating their physical origin in terms of the quark-spin structure in the nucleon. The formal aspects of the derivation of these relations are complemented with explicit examples, emphasizing how and to which extent the conditions which lead to relations among TMDs are implemented in different classes of quark models.
Quark transverse charge densities in the from lattice QCD
Abstract We extend the formalism relating electromagnetic form factors to transverse quark charge densities in the light-front frame to the case of a spin-3/2 baryon and calculate these transverse densities for the Δ ( 1232 ) isobar using lattice QCD. The transverse charge densities for a transversely polarized spin-3/2 particle are characterized by monopole, dipole, quadrupole, and octupole patterns representing the structure beyond that of a pure point-like spin-3/2 particle. We present lattice QCD results for the Δ-isobar electromagnetic form factors for pion masses down to approximatively 350 MeV for three cases: quenched QCD, two-degenerate flavors of dynamical Wilson quarks, and three…
Transverse-Momentum Distributions and Spherical Symmetry
Transverse-momentum dependent parton distributions (TMDs) are studied in the framework of quark models. In particular, quark model relations among TMDs are reviewed and their physical origin is discussed in terms of rotational-symmetry properties of the nucleon state in its rest frame.
Unified framework for generalized and transverse-momentum dependent parton distributions within a 3Q light-cone picture of the nucleon
We present a systematic study of generalized transverse-momentum dependent parton distributions (GTMDs). By taking specific limits or projections, these GTMDs yield various transverse-momentum dependent and generalized parton distributions, thus providing a unified framework to simultaneously model different observables. We present such simultaneous modeling by considering a light-cone wave function overlap representation of the GTMDs. We construct the different quark-quark correlation functions from the 3-quark Fock components within both the light-front constituent quark model as well as within the chiral quark-soliton model. We provide a comparison with available data and make prediction…