0000000000208150

AUTHOR

P. Schillebeeckx

New measurement of the 242Pu(n,γ) cross section at n-TOF-EAR1 for MOX fuels: Preliminary results in the RRR

The spent fuel of current nuclear reactors contains fissile plutonium isotopes that can be combined with 238U to make mixed oxide (MOX) fuel. In this way the Pu from spent fuel is used in a new reactor cycle, contributing to the long-term sustainability of nuclear energy. The use of MOX fuels in thermal and fast reactors requires accurate capture and fission cross sections. For the particular case of 242Pu, the previous neutron capture cross section measurements were made in the 70’s, providing an uncertainty of about 35% in the keV region. In this context, the Nuclear Energy Agency recommends in its “High Priority Request List” and its report WPEC-26 that the capture cross section of 242Pu…

research product

7Be(n,α) and 7Be(n,p) cross-section measurement for the cosmological lithium problem at the n-TOF facility at CERN

One of the most puzzling problems in Nuclear Astrophysics is the “Cosmological Lithium Problem”, i.e the discrepancy between the primordial abundance of \(^{7}\)Li observed in metal poor halo stars (Asplund et al. in Astrophys J 644:229–259, 2006, [1]), and the one predicted by Big Bang Nucleosynthesis (BBN). One of the reactions that could have an impact on the problem is \(^{7}\)Be(n,p)\(^{7}\)Li. Despite of the importance of this reaction in BBN, the cross-section has never been directly measured at the energies of interest for BBN. Taking advantage of the innovative features of the second experimental area at the n\(\_\)TOF facility at CERN (Sabate-Gilarte et al. in Eur Phys J A 53:210,…

research product

GEANT4 simulation of the neutron background of the C6D6 set-up for capture studies at n_TOF

The neutron sensitivity of the C6D6 detector setup used at n_TOF facility for capture measurements has been studied by means of detailed GEANT4 simulations. A realistic software replica of the entire n_TOF experimental hall, including the neutron beam line, sample, detector supports and the walls of the experimental area has beeni mplemented in the simulations. The simulations have been analyzed in the same manner as experimental data, in particular by applying the Pulse Height Weighting Technique. The simulations have been validated against a measurement of the neutron background performed with anatC sample, showing an excellent agreement above 1 keV. At lower energies, an additional compo…

research product

Neutron capture cross section measurement ofU238at the CERN n_TOF facility in the energy region from 1 eV to 700 keV

The aim of this work is to provide a precise and accurate measurement of the U238(n,γ) reaction cross section in the energy region from 1 eV to 700 keV. This reaction is of fundamental importance for the design calculations of nuclear reactors, governing the behavior of the reactor core. In particular, fast reactors, which are experiencing a growing interest for their ability to burn radioactive waste, operate in the high energy region of the neutron spectrum. In this energy region most recent evaluations disagree due to inconsistencies in the existing measurements of up to 15%. In addition, the assessment of nuclear data uncertainty performed for innovative reactor systems shows that the u…

research product

The Nuclear astrophysics program at n_TOF (CERN)

An important experimental program on Nuclear Astrophysics is being carried out at the n_TOF since several years, in order to address the still open issues in stellar and primordial nucleosynthesis. Several neutron capture reactions relevant to s-process nucleosynthesis have been measured so far, some of which on important branching point radioisotopes. Furthermore, the construction of a second experimental area has recently opened the way to challenging measurements of (n, charged particle) reactions on isotopes of short half-life. The Nuclear Astrophysics program of the n_TOF Collaboration is here described, with emphasis on recent results relevant for stellar nucleosynthesis, stellar neut…

research product

Experimental neutron capture data of 58Ni from the CERN n_TOF facility

The $^{58}$Ni $(n,\gamma)$ cross section has been measured at the neutron time of flight facility n_TOF at CERN, in the energy range from 27 meV up to 400 keV. In total, 51 resonances have been analyzed up to 122 keV. Maxwellian averaged cross sections (MACS) have been calculated for stellar temperatures of kT$=$5-100 keV with uncertainties of less than 6%, showing fair agreement with recent experimental and evaluated data up to kT = 50 keV. The MACS extracted in the present work at 30 keV is 34.2$\pm$0.6$_\mathrm{stat}\pm$1.8$_\mathrm{sys}$ mb, in agreement with latest results and evaluations, but 12% lower relative to the recent KADoNIS compilation of astrophysical cross sections. When in…

research product

Characterization and First Test of an i-TED Prototype at CERN n_TOF

International audience; Neutron capture cross section measurements are of fundamental importance for the study of the slow process of neutron capture, so called s-process. This mechanism is responsible for the formation of most elements heavier than iron in the Universe. To this aim, installations and detectors have been developed, as total energy radiation C$_{6}$ D$_{6}$ detectors. However, these detectors can not distinguish between true capture gamma rays from the sample under study and neutron induced gamma rays produced in the surroundings of the setup. To improve this situation, we propose (Domingo Pardo in Nucl Instr Meth Phys Res A 825:78–86, 2016, [1]) the use of the Compton princ…

research product