0000000000208244

AUTHOR

Stefano Borgani

showing 15 related works from this author

Euclid preparation XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis

2022

The combination and cross-correlation of the upcoming $Euclid$ data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of $Euclid$ and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on $Euclid$-specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Cosmic microwave backgroundstatistical [methods]FOS: Physical sciencesAstrophysicscosmic background radiationAstrophysics::Cosmology and Extragalactic AstrophysicsJoint analysiskosmologia01 natural sciencesmethodsNOpimeä aine[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]mikroaallotSettore FIS/05 - Astronomia e Astrofisicasurveys0103 physical sciencestszsurvey010303 astronomy & astrophysicsPhysicsmethods: statistical010308 nuclear & particles physicsComputer Science::Information RetrievalmaailmankaikkeusAstrophysics::Instrumentation and Methods for AstrophysicsAstronomy and Astrophysicscross-correlation115 Astronomy Space scienceCosmic background radiation; Large-scale structure of Universe; Methods: statistical; Surveyskosminen taustasäteilySpace and Planetary Sciencemethodlarge-scale structure of Universepimeä energia[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]statisticalAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The Voyage of Metals in the Universe from Cosmological to Planetary Scales: the need for a Very High-Resolution, High Throughput Soft X-ray Spectrome…

2019

Metals form an essential part of the Universe at all scales. Without metals we would not exist, and the Cosmos would look completely different. Metals are primarily born through nuclear processes in stars. They leave their cradles through winds or explosions, and then start their journey through space. This can lead them in and out of astronomical objects on all scales, ranging from comets, planets, stars, entire galaxies, groups and clusters of galaxies to the largest structures of the Universe. Their wanderings are fundamental in determining how these objects, and the entire universe, evolve. In addition, their bare presence can be used to trace what these structures look like. The scope …

Very high resolutionAstronomical ObjectsCosmology and Nongalactic Astrophysics (astro-ph.CO)010504 meteorology & atmospheric sciencesGalaxy-ISM-CGM-IGM feedbackFOS: Physical sciencesSpace (mathematics)Cycle of baryons and metals7. Clean energy01 natural sciencesCycle of baryons and metals; Galaxy-ISM-CGM-IGM feedback; High-resolution X-ray spectrometer; X-ray gratingsSettore FIS/05 - Astronomia E Astrofisica0103 physical sciences[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]X-ray gratingsInstrumentation and Methods for Astrophysics (astro-ph.IM)010303 astronomy & astrophysicsThroughput (business)0105 earth and related environmental sciencesCycle of baryons and metalHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsSoft x rayCOSMIC cancer databaseSpectrometerSettore FIS/05AstronomyAstronomy and AstrophysicsHigh-resolution X-ray spectrometerAstrophysics - Astrophysics of GalaxiesStars13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - Instrumentation and Methods for AstrophysicsAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Mass-Metallicity Relation from Cosmological Hydrodynamical Simulations and X-ray Observations of Galaxy Groups and Clusters

2018

Recent X-ray observations of galaxy clusters show that the distribution of intra-cluster medium (ICM) metallicity is remarkably uniform in space and time. In this paper, we analyse a large sample of simulated objects, from poor groups to rich clusters, to study the dependence of the metallicity and related quantities on the mass of the systems. The simulations are performed with an improved version of the Smoothed-Particle-Hydrodynamics \texttt{GADGET-3} code and consider various astrophysical processes including radiative cooling, metal enrichment and feedback from stars and active galactic nuclei (AGN). The scaling between the metallicity and the temperature obtained in the simulations ag…

galaxies: clusters: intracluster mediumActive galactic nucleusCosmology and Nongalactic Astrophysics (astro-ph.CO)MetallicityFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesmethods: numericalGalaxy groups and clusters0103 physical sciencesCluster (physics)clusters: general [galaxies]methods: numerical; galaxies: clusters: general; galaxies: clusters: intracluster medium; X-rays: galaxies: clusters010303 astronomy & astrophysicsScalingGalaxy clusterPhysics010308 nuclear & particles physicsnumerical [methods]Astronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesRedshiftStarsgalaxies: clusters: generalclusters: intracluster medium [galaxies]Space and Planetary ScienceX-rays: galaxies: clustersAstrophysics of Galaxies (astro-ph.GA)galaxies: clusters [X-rays]Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

BCG Mass Evolution in Cosmological Hydro-Simulations

2018

We analyze the stellar growth of Brightest Cluster Galaxies (BCGs) produced by cosmological zoom-in hydrodynamical simulations of the formation of massive galaxy clusters. The evolution of the stellar mass content is studied considering different apertures, and tracking backwards either the main progenitor of the $z=0$ BCG or that of the cluster hosting the BCG at $z=0$. Both methods lead to similar results up to $z \simeq 1.5$. The simulated BCGs masses at $z=0$ are in agreement with recent observations. In the redshift interval from $z=1$ to $z=0$ we find growth factors 1.3, 1.6 and 3.6 for stellar masses within 30kpc, 50kpc and 10% of $R_{500}$ respectively. The first two factors, and in…

NUMERICAL [METHODS]Ciencias FísicasFOS: Physical sciencesEVOLUTION [CD- GALAXIES]Astrophysics::Cosmology and Extragalactic AstrophysicsGalaxies: formationELLIPTICAL AND LENTICULAR [GALAXIES]01 natural sciencesGENERAL [QUASARS]CD- galaxies: evolution; Galaxies: elliptical and lenticular; Galaxies: formation; Galaxies: haloes; Methods: numerical; Quasars: general; Astronomy and Astrophysics; Space and Planetary Science//purl.org/becyt/ford/1 [https]haloe [Galaxies]HALOES [GALAXIES]0103 physical sciencesGalaxies: haloesFORMATION [GALAXIES]010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsGalaxies: elliptical and lenticularMethods: numerical010308 nuclear & particles physicsAstronomy and Astrophysics//purl.org/becyt/ford/1.3 [https]Astronomy and AstrophysicCD- galaxies: evolutionAstrophysics - Astrophysics of GalaxiesAstronomíaQuasars: general13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)HumanitiesCIENCIAS NATURALES Y EXACTASMonthly Notices of the Royal Astronomical Society
researchProduct

Euclid preparation: XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography

2021

Ilbert, O., et al. (Euclid Collaboration)

statistical [Methods]IMPACTUNIVERSEAstrophysics01 natural sciencesDark energyGalaxies: distances and redshiftdark energyPHOTOMETRIC REDSHIFTS010303 astronomy & astrophysicsWeak gravitational lensingPhotometric redshiftmedia_commonPhysicsdistances and redshift [Galaxies]Dark energy; Galaxies: distances and redshifts; Methods: statisticalSIMULATIONastro-ph.CO3103 Astronomy and AstrophysicsProbability distributionSpectral energy distributiongalaxies: distances and redshiftsAstrophysics - Cosmology and Nongalactic AstrophysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)530 Physicsastro-ph.GAmedia_common.quotation_subjectFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics1912 Space and Planetary Science0103 physical sciencesdistances and redshifts [Galaxies]/dk/atira/pure/subjectarea/asjc/1900/1912DISTRIBUTIONSmethods: statistical010308 nuclear & particles physicsAstronomy and AstrophysicsPERFORMANCE115 Astronomy Space scienceAstrophysics - Astrophysics of GalaxiesEVOLUTIONGalaxyUniverseRedshiftSTELLARRESOLUTIONSpace and Planetary Science10231 Institute for Computational ScienceAstrophysics of Galaxies (astro-ph.GA)Dark energy/dk/atira/pure/subjectarea/asjc/3100/3103[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct

Exploring the role of cosmological shock waves in the Dianoga simulations of galaxy clusters

2021

Cosmological shock waves are ubiquitous to cosmic structure formation and evolution. As a consequence, they play a major role in the energy distribution and thermalization of the intergalactic medium (IGM). We analyze the Mach number distribution in the Dianoga simulations of galaxy clusters performed with the SPH code GADGET-3. The simulations include the effects of radiative cooling, star formation, metal enrichment, supernova and active galactic nuclei feedback. A grid-based shock-finding algorithm is applied in post-processing to the outputs of the simulations. This procedure allows us to explore in detail the distribution of shocked cells and their strengths as a function of cluster ma…

Shock wavePhysicsCosmology and Nongalactic Astrophysics (astro-ph.CO)Structure formationActive galactic nucleusShock (fluid dynamics)010308 nuclear & particles physicsStar formationAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomy and AstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesSupernovaSpace and Planetary Science0103 physical sciencesCluster (physics)010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsGalaxy clusterAstrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

Is there any scaling in the cluster distribution?

1994

We apply fractal analysis methods to investigate the scaling properties in the Abell and ACO catalogs of rich galaxy clusters. We also discuss different technical aspects of the method when applied to data sets with small number of points as the cluster catalogs. Results are compared with simulations based on the Zel'dovich approximation. We limit our analysis to scales less than 100 $\hm$. The cluster distribution show a scale invariant multifractal behavior in a limited scale range. For the Abell catalog this range is 15--60$\hm$, while for the ACO sample it extends to smaller scales. Despite this difference in the extension of the scale--range where scale--invariant clustering takes plac…

Scale (ratio)FOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsCOMPUTERIZED SIMULATIONAstrophysicsSTATISTICAL CORRELATIONFractalSCALING LAWSCluster (physics)Statistical physicsMATHEMATICAL MODELSScalingGalaxy clusterPhysicsASTRONOMICAL CATALOGSAstrophysics (astro-ph)ERROR ANALYSISAstronomy and AstrophysicsMultifractal systemScale invarianceFractal analysisFRACTALSSpace and Planetary ScienceASTRONOMICAL MODELSCLUSTER ANALYSISCOSMOLOGYGALACTIC CLUSTERS
researchProduct

Neutral hydrogen in galaxy clusters: impact of AGN feedback and implications for intensity mapping

2015

By means of zoom-in hydrodynamic simulations we quantify the amount of neutral hydrogen (HI) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics (SPH), include radiative cooling, star formation, metal enrichment and supernova feedback, and can be split in two different groups, depending on whether feedback from active galactic nuclei (AGN) is turned on or off. Simulations are analyzed to account for HI self-shielding and the presence of molecular hydrogen. We find that the mass in neutral hydrogen of dark matter halos monotonically increases with the halo mass and can be well described by a power-law of th…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusDark matterFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysicsmiscellaneous [cosmology]01 natural sciences7. Clean energymethods: numericalSettore FIS/05 - Astronomia e Astrofisicamethods: numerical; galaxies: clusters: general; cosmology: miscellaneous0103 physical sciencesclusters: general [galaxies]010303 astronomy & astrophysicsGalaxy clusterAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsStar formationAstronomynumerical [methods]Astronomy and AstrophysicsCosmology: Miscellaneous; Galaxies: Clusters: General; Methods: NumericalAstrophysics - Astrophysics of GalaxiesGalaxyRedshiftSupernovagalaxies: clusters: general13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Halocosmology: miscellaneousAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

The origin of ICM enrichment in the outskirts of present-day galaxy clusters from cosmological hydrodynamical simulations

2018

The uniformity of the intra-cluster medium (ICM) enrichment level in the outskirts of nearby galaxy clusters suggests that chemical elements were deposited and widely spread into the intergalactic medium before the cluster formation. This observational evidence is supported by numerical findings from cosmological hydrodynamical simulations, as presented in Biffi et al. (2017), including the effect of thermal feedback from active galactic nuclei. Here, we further investigate this picture, by tracing back in time the spatial origin and metallicity evolution of the gas residing at z=0 in the outskirts of simulated galaxy clusters. In these regions, we find a large distribution of iron abundanc…

galaxies: clusters: intracluster mediumCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusMetallicityFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysics01 natural sciencesVirial theoremmethods: numericalgalaxies: clusters: general; galaxies: clusters: intracluster medium; methods: numericalAbundance (ecology)0103 physical sciencesCluster (physics)clusters: general [galaxies]010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsGalaxy clusterPhysics010308 nuclear & particles physicsnumerical [methods]Astronomy and AstrophysicsAstrophysics - Astrophysics of GalaxiesAccretion (astrophysics)clusters: intracluster medium [galaxies]galaxies: clusters: generalSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)HaloAstrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

The history of chemical enrichment in the intracluster medium from cosmological simulations

2017

The distribution of metals in the intracluster medium (ICM) of galaxy clusters provides valuable information on their formation and evolution, on the connection with the cosmic star formation and on the effects of different gas processes. By analyzing a sample of simulated galaxy clusters, we study the chemical enrichment of the ICM, its evolution, and its relation with the physical processes included in the simulation and with the thermal properties of the core. These simulations, consisting of re-simulations of 29 Lagrangian regions performed with an upgraded version of the SPH GADGET-3 code, have been run including two different sets of baryonic physics: one accounts for radiative coolin…

Active galactic nucleusCosmology and Nongalactic Astrophysics (astro-ph.CO)Radiative coolingGalaxies:clusters:general; Galaxies:clusters:Intracluster medium; Methods: numerical; Astronomy and Astrophysics; Space and Planetary ScienceMetallicityFOS: Physical sciencesclusters:Intracluster medium [Galaxies]AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesSmoothed-particle hydrodynamicsclusters:general [Galaxies]Intracluster medium0103 physical sciencesGalaxies:clusters:Intracluster medium010303 astronomy & astrophysicsGalaxy clusterAstrophysics::Galaxy AstrophysicsPhysicsnumerical [Methods]Methods: numerical010308 nuclear & particles physicsStar formationAstronomyAstronomy and AstrophysicsAstronomy and AstrophysicAstrophysics - Astrophysics of GalaxiesGalaxies:clusters:generalSupernova13. Climate actionSpace and Planetary ScienceAstrophysics of Galaxies (astro-ph.GA)Astrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution

2018

We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and $Y_{X}$. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with $M_{500} > 10^{14} M_{\odot} E(z)^{-1}$, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the r…

galaxies: clusters: intracluster mediumCosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusNUMERICAL [METHODS]Ciencias FísicasFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic AstrophysicsAstrophysicsnumerical galaxies: clusters: general galaxies: clusters: intracluster medium X-rays: galaxies: clusters [methods]01 natural sciencesmethods: numericalLuminosity//purl.org/becyt/ford/1 [https]GALAXIES: CLUSTERS [X-RAYS]Smoothed-particle hydrodynamics0103 physical sciences010303 astronomy & astrophysicsScalingAstrophysics::Galaxy AstrophysicsGalaxy clusterPhysicsmethods: numerical galaxies: clusters: general galaxies: clusters: intracluster medium X-rays: galaxies: clustersSettore FIS/05010308 nuclear & particles physicsStar formationAstronomy and AstrophysicsObservable//purl.org/becyt/ford/1.3 [https]RedshiftAstronomíamethods: numerical; galaxies: clusters: general; galaxies: clusters: intracluster medium; X-rays: galaxies: clusters; Astrophysics - Cosmology and Nongalactic Astrophysicsgalaxies: clusters: generalSpace and Planetary ScienceX-rays: galaxies: clustersCLUSTERS: INTRACLUSTER MEDIUM [GALAXIES]CLUSTERS: GENERAL [GALAXIES]CIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic AstrophysicsMonthly Notices of the Royal Astronomical Society
researchProduct

ON the NATURE of HYDROSTATIC EQUILIBRIUM in GALAXY CLUSTERS

2016

In this paper we investigate the level of hydrostatic equilibrium (HE) in the intra-cluster medium of simulated galaxy clusters, extracted from state-of-the-art cosmological hydrodynamical simulations performed with the Smoothed-Particle-Hydrodynamic code GADGET-3. These simulations include several physical processes, among which stellar and AGN feedback, and have been performed with an improved version of the code that allows for a better description of hydrodynamical instabilities and gas mixing processes. Evaluating the radial balance between the gravitational and hydrodynamical forces, via the gas accelerations generated, we effectively examine the level of HE in every object of the sam…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusgalaxies: clusters: intracluster mediumFOS: Physical sciences01 natural sciencesVirial theoremlaw.inventionmethods: numericalGravitationlawIntracluster medium0103 physical sciencesCluster (physics)clusters: general [galaxies]010303 astronomy & astrophysicsGalaxy clusterPhysics010308 nuclear & particles physicsnumerical [methods]Astronomy and AstrophysicsRadiusAstronomy and AstrophysicComputational physicsclusters: intracluster medium [galaxies]galaxies: clusters: generalSpace and Planetary ScienceHydrostatic equilibriumgalaxies: clusters: general; galaxies: clusters: intracluster medium; methods: numerical; Astronomy and Astrophysics; Space and Planetary ScienceAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Pressure of the hot gas in simulations of galaxy clusters

2016

We analyze the radial pressure profiles, the ICM clumping factor and the Sunyaev-Zel'dovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the TreePM-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, AGN and/or stellar feedback. Our results are analyzed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observa…

Cosmology and Nongalactic Astrophysics (astro-ph.CO)Active galactic nucleusgalaxies: clusters: intracluster mediumCiencias FísicasFOS: Physical sciencesAstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesmethods: numerical//purl.org/becyt/ford/1 [https]Galaxy groups and clustersIntracluster medium0103 physical sciencesCluster (physics)clusters: general [galaxies]methods: numerical; galaxies: clusters: general; X-rays: galaxies: clusters; galaxies: clusters: intracluster medium010303 astronomy & astrophysicsScalingGalaxy clusterAstrophysics::Galaxy AstrophysicsPhysics010308 nuclear & particles physicsAstronomy and Astrophysicsnumerical [methods]//purl.org/becyt/ford/1.3 [https]Function (mathematics)Redshiftgalaxies: cluster [X-rays]CLUSTERS: GENERAL -X-RAYS: GALAXIES: CLUSTERS [GALAXIES]AstronomíaSpace and Planetary Sciencegalaxies: clusters: generalclusters: intracluster medium [galaxies]X-rays: galaxies: clustersCIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct

Multiscaling Properties of Large-Scale Structure in the Universe

1995

The large-scale distribution of galaxies and galaxy clusters in the universe can be described in the mathematical language of multifractal sets. A particularly significant aspect of this description is that it furnishes a natural explanation for the observed differences in clustering properties of objects of different density in terms of multiscaling, the generic consequence of the application of a local density threshold to a multifractal set. The multiscaling hypothesis suggests ways of improving upon the traditional statistical measures of clustering pattern (correlation functions) and exploring further the connection between clustering pattern and dynamics.

PhysicsMultidisciplinarygalaxieMultifractal systemGalaxyCosmologyConnection (mathematics)CosmologySet (abstract data type)Distribution (mathematics)statisticsCosmology; galaxies; large-scale structure of the universe; statisticsgalaxiesStatistical physicslarge-scale structure of the universeCluster analysisGalaxy cluster
researchProduct

Simulation-based marginal likelihood for cluster strong lensing cosmology

2015

Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with $\Lambda$CDM cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, $\alpha$ and $\beta$. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected …

FOS: Computer and information sciencesSTATISTICAL [METHODS]Cold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)NUMERICAL [METHODS]Ciencias FísicasPosterior probabilityFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesStatistics - ApplicationsCosmologymethods: numerical//purl.org/becyt/ford/1 [https]cosmology: theory0103 physical sciencesCluster (physics)Applications (stat.AP)Statistical physics010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Galaxy clusterPhysicsmethods: statisticalgravitational lensing: strong; methods: numerical; methods: statistical; galaxies: clusters: general; cosmology: theory010308 nuclear & particles physicsgravitational lensing: strongAstronomy and AstrophysicsBayes factor//purl.org/becyt/ford/1.3 [https]STRONG [GRAVITATIONAL LENSING]RedshiftMarginal likelihoodAstronomíaTHEORY [COSMOLOGY]Space and Planetary Sciencegalaxies: clusters: generalPhysics - Data Analysis Statistics and ProbabilityCLUSTERS: GENERAL [GALAXIES]Astrophysics - Instrumentation and Methods for AstrophysicsData Analysis Statistics and Probability (physics.data-an)CIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic Astrophysics
researchProduct