6533b7d8fe1ef96bd126a395
RESEARCH PRODUCT
Simulation-based marginal likelihood for cluster strong lensing cosmology
Gian Luigi GranatoGian Luigi GranatoD. FabjanD. FabjanKlaus DolagStefano BorganiStefano BorganiMassimo MeneghettiMassimo MeneghettiCinthia Ragone-figueroaCinthia Ragone-figueroaMadhura KilledarMadhura KilledarSusana Planellessubject
FOS: Computer and information sciencesSTATISTICAL [METHODS]Cold dark matterCosmology and Nongalactic Astrophysics (astro-ph.CO)NUMERICAL [METHODS]Ciencias FísicasPosterior probabilityFOS: Physical sciencesAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesStatistics - ApplicationsCosmologymethods: numerical//purl.org/becyt/ford/1 [https]cosmology: theory0103 physical sciencesCluster (physics)Applications (stat.AP)Statistical physics010303 astronomy & astrophysicsInstrumentation and Methods for Astrophysics (astro-ph.IM)Galaxy clusterPhysicsmethods: statisticalgravitational lensing: strong; methods: numerical; methods: statistical; galaxies: clusters: general; cosmology: theory010308 nuclear & particles physicsgravitational lensing: strongAstronomy and AstrophysicsBayes factor//purl.org/becyt/ford/1.3 [https]STRONG [GRAVITATIONAL LENSING]RedshiftMarginal likelihoodAstronomíaTHEORY [COSMOLOGY]Space and Planetary Sciencegalaxies: clusters: generalPhysics - Data Analysis Statistics and ProbabilityCLUSTERS: GENERAL [GALAXIES]Astrophysics - Instrumentation and Methods for AstrophysicsData Analysis Statistics and Probability (physics.data-an)CIENCIAS NATURALES Y EXACTASAstrophysics - Cosmology and Nongalactic Astrophysicsdescription
Comparisons between observed and predicted strong lensing properties of galaxy clusters have been routinely used to claim either tension or consistency with $\Lambda$CDM cosmology. However, standard approaches to such cosmological tests are unable to quantify the preference for one cosmology over another. We advocate approximating the relevant Bayes factor using a marginal likelihood that is based on the following summary statistic: the posterior probability distribution function for the parameters of the scaling relation between Einstein radii and cluster mass, $\alpha$ and $\beta$. We demonstrate, for the first time, a method of estimating the marginal likelihood using the X-ray selected $z>0.5$ MACS clusters as a case in point and employing both N-body and hydrodynamic simulations of clusters. We investigate the uncertainty in this estimate and consequential ability to compare competing cosmologies, that arises from incomplete descriptions of baryonic processes, discrepancies in cluster selection criteria, redshift distribution, and dynamical state. The relation between triaxial cluster masses at various overdensities provide a promising alternative to the strong lensing test.
year | journal | country | edition | language |
---|---|---|---|---|
2015-07-20 |