0000000000208252

AUTHOR

Elena Rasia

Pressure of the hot gas in simulations of galaxy clusters

We analyze the radial pressure profiles, the ICM clumping factor and the Sunyaev-Zel'dovich (SZ) scaling relations of a sample of simulated galaxy clusters and groups identified in a set of hydrodynamical simulations based on an updated version of the TreePM-SPH GADGET-3 code. Three different sets of simulations are performed: the first assumes non-radiative physics, the others include, among other processes, AGN and/or stellar feedback. Our results are analyzed as a function of redshift, ICM physics, cluster mass and cluster cool-coreness or dynamical state. In general, the mean pressure profiles obtained for our sample of groups and clusters show a good agreement with X-ray and SZ observa…

research product

Mass-Metallicity Relation from Cosmological Hydrodynamical Simulations and X-ray Observations of Galaxy Groups and Clusters

Recent X-ray observations of galaxy clusters show that the distribution of intra-cluster medium (ICM) metallicity is remarkably uniform in space and time. In this paper, we analyse a large sample of simulated objects, from poor groups to rich clusters, to study the dependence of the metallicity and related quantities on the mass of the systems. The simulations are performed with an improved version of the Smoothed-Particle-Hydrodynamics \texttt{GADGET-3} code and consider various astrophysical processes including radiative cooling, metal enrichment and feedback from stars and active galactic nuclei (AGN). The scaling between the metallicity and the temperature obtained in the simulations ag…

research product

Non-thermal pressure support in X-COP galaxy clusters

Galaxy clusters are the endpoints of structure formation and are continuously growing through the merging and accretion of smaller structures. Numerical simulations predict that a fraction of their energy content is not yet thermalized, mainly in the form of kinetic motions (turbulence, bulk motions). Measuring the level of non-thermal pressure support is necessary to understand the processes leading to the virialization of the gas within the potential well of the main halo and to calibrate the biases in hydrostatic mass estimates. We present high-quality measurements of hydrostatic masses and intracluster gas fraction out to the virial radius for a sample of 12 nearby clusters with availab…

research product

Neutral hydrogen in galaxy clusters: impact of AGN feedback and implications for intensity mapping

By means of zoom-in hydrodynamic simulations we quantify the amount of neutral hydrogen (HI) hosted by groups and clusters of galaxies. Our simulations, which are based on an improved formulation of smoothed particle hydrodynamics (SPH), include radiative cooling, star formation, metal enrichment and supernova feedback, and can be split in two different groups, depending on whether feedback from active galactic nuclei (AGN) is turned on or off. Simulations are analyzed to account for HI self-shielding and the presence of molecular hydrogen. We find that the mass in neutral hydrogen of dark matter halos monotonically increases with the halo mass and can be well described by a power-law of th…

research product

The history of chemical enrichment in the intracluster medium from cosmological simulations

The distribution of metals in the intracluster medium (ICM) of galaxy clusters provides valuable information on their formation and evolution, on the connection with the cosmic star formation and on the effects of different gas processes. By analyzing a sample of simulated galaxy clusters, we study the chemical enrichment of the ICM, its evolution, and its relation with the physical processes included in the simulation and with the thermal properties of the core. These simulations, consisting of re-simulations of 29 Lagrangian regions performed with an upgraded version of the SPH GADGET-3 code, have been run including two different sets of baryonic physics: one accounts for radiative coolin…

research product

Cosmological hydrodynamical simulations of galaxy clusters: X-ray scaling relations and their evolution

We analyse cosmological hydrodynamical simulations of galaxy clusters to study the X-ray scaling relations between total masses and observable quantities such as X-ray luminosity, gas mass, X-ray temperature, and $Y_{X}$. Three sets of simulations are performed with an improved version of the smoothed particle hydrodynamics GADGET-3 code. These consider the following: non-radiative gas, star formation and stellar feedback, and the addition of feedback by active galactic nuclei (AGN). We select clusters with $M_{500} > 10^{14} M_{\odot} E(z)^{-1}$, mimicking the typical selection of Sunyaev-Zeldovich samples. This permits to have a mass range large enough to enable robust fitting of the r…

research product

Universal thermodynamic properties of the intracluster medium over two decades in radius in the X-COP sample

The hot plasma in galaxy clusters is expected to be heated to high temperatures through shocks and adiabatic compression. The thermodynamical properties of the gas encode information on the processes leading to the thermalization of the gas in the cluster's potential well as well as non-gravitational processes such as gas cooling, AGN feedback and kinetic energy. In this work we present the radial profiles of the thermodynamic properties of the intracluster medium (ICM) out to the virial radius for a sample of 12 galaxy clusters selected from the Planck all-sky survey. We determine the universal profiles of gas density, temperature, pressure, and entropy over more than two decades in radius…

research product

ON the NATURE of HYDROSTATIC EQUILIBRIUM in GALAXY CLUSTERS

In this paper we investigate the level of hydrostatic equilibrium (HE) in the intra-cluster medium of simulated galaxy clusters, extracted from state-of-the-art cosmological hydrodynamical simulations performed with the Smoothed-Particle-Hydrodynamic code GADGET-3. These simulations include several physical processes, among which stellar and AGN feedback, and have been performed with an improved version of the code that allows for a better description of hydrodynamical instabilities and gas mixing processes. Evaluating the radial balance between the gravitational and hydrodynamical forces, via the gas accelerations generated, we effectively examine the level of HE in every object of the sam…

research product