0000000000208258
AUTHOR
Giulia Ossato
Detecting Protein Aggregation on Cells Surface: Concanavalin A Oligomers Formation
A number of neurodegenerative diseases involve protein aggregation and amyloid formation. Recently evidence has emerged indicating small-transient prefibrillar oligomers as the primary pathogenic agents. Noteworthy, strict analogies exist between the behaviour of cells in culture treated with misfolded non-pathogenic proteins and in pathologic conditions, this instance together with the observation that the oligomers and fibrils are characterised by common structural features suggest that common mechanisms for cytotoxicity could exists and have to be perused in common interactions involved in aggregation.We here report an experimental study on ConcanavalinA (ConA) aggregation and its effect…
Fluctuation Methods To Study Protein Aggregation in Live Cells: Concanavalin A Oligomers Formation
Prefibrillar oligomers of proteins are suspected to be the primary pathogenic agents in several neurodegenerative diseases. A key approach for elucidating the pathogenic mechanisms is to probe the existence of oligomers directly in living cells. In this work, we were able to monitor the process of aggregation of Concanavalin A in live cells. We used number and brightness analysis, two-color cross number and brightness analysis, and Raster image correlation spectroscopy to obtain the number of molecules, aggregation state, and diffusion coefficient as a function of time and cell location. We observed that binding of Concanavalin A to the membrane and the formation of small aggregates paralle…