0000000000208282

AUTHOR

Icecube Collaboration

A Search for IceCube Events in the Direction of ANITA Neutrino Candidates

During the first three flights of the Antarctic Impulsive Transient Antenna (ANITA) experiment, the collaboration detected several neutrino candidates. Two of these candidate events were consistent with an ultra-high-energy up-going air shower and compatible with a tau neutrino interpretation. A third neutrino candidate event was detected in a search for Askaryan radiation in the Antarctic ice, although it is also consistent with the background expectation. The inferred emergence angle of the first two events is in tension with IceCube and ANITA limits on isotropic cosmogenic neutrino fluxes. Here, we test the hypothesis that these events are astrophysical in origin, possibly caused by a po…

research product

Search for extraterrestrial point sources of high energy neutrinos with AMANDA-II using data collected in 2000-2002

The results of a search for point sources of high energy neutrinos in the northern hemisphere using data collected by AMANDA-II in the years 2000, 2001 and 2002 are presented. In particular, a comparison with the single-year result previously published shows that the sensitivity was improved by a factor of 2.2. The muon neutrino flux upper limits on selected candidate sources, corresponding to an E^{-2} neutrino energy spectrum, are included. Sky grids were used to search for possible excesses above the background of cosmic ray induced atmospheric neutrinos. This search reveals no statistically significant excess for the three years considered.

research product

IceCube search for neutrinos coincident with compact binary mergers from LIGO-Virgo's first gravitational-wave transient catalog

Using the IceCube Neutrino Observatory, we search for high-energy neutrino emission coincident with compact binary mergers observed by the LIGO and Virgo gravitational-wave (GW) detectors during their first and second observing runs. We present results from two searches targeting emission coincident with the sky localization of each GW event within a 1000 s time window centered around the reported merger time. One search uses a model-independent unbinned maximum-likelihood analysis, which uses neutrino data from IceCube to search for pointlike neutrino sources consistent with the sky localization of GW events. The other uses the Low-Latency Algorithm for Multi-messenger Astrophysics, which …

research product

Search for Neutrino‐induced Cascades from Gamma‐Ray Bursts with AMANDA

Using the neutrino telescope AMANDA-II, we have conducted two analyses searching for neutrino-induced cascades from gamma-ray bursts. No evidence of astrophysical neutrinos was found, and limits are presented for several models. We also present neutrino effective areas which allow the calculation of limits for any neutrino production model. The first analysis looked for a statistical excess of events within a sliding window of 1 or 100 seconds (for short and long burst classes, respectively) during the years 2001-2003. The resulting upper limit on the diffuse flux normalization times E^2 for the Waxman-Bahcall model at 1 PeV is 1.6 x 10^-6 GeV cm^-2 s^-1 sr^-1 (a factor of 120 above the the…

research product

Searches for Sterile Neutrinos with the IceCube Detector

The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy in the approximate 320 GeV to 20 TeV range, to search for the oscillation signatures of light sterile neutrinos. No evidence for anomalous $\nu_\mu$ or $\bar{\nu}_\mu$ disappearance is observed in either of two independently developed analyses, each using one year of atmospheric neutrino data. New exclusion limits are placed on the parameter space of the 3+1 model, in which muon antineutrinos would experience a strong MSW-resonant oscillation. The exclusion limits extend to $\mathrm{sin}^2 2\theta_{24} \leq$ 0.02 at $\Delta m^2 \sim$ 0.3 $\mathrm{eV}^…

research product

Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

Made available in DSpace on 2022-04-29T07:21:49Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-11-17 We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of …

research product

Evidence for Astrophysical Muon Neutrinos from the Northern Sky with IceCube

Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere dataset consisting primarily of nu_e and nu_tau charged current and neutral current (cascade) neutrino interactions. In the analysis presented here, a data sample of approximately 35,000 muon neutrinos from the Northern sky was extracted from data taken during 659.5 days of livetime recorded between May 2010 and May 2012. While this sample is composed primarily of neutrinos produced by cosmic ray interactions in the Earth's atmosphere, the highest energy events are inconsistent with a hypothesis of …

research product

Characteristics of the diffuse astrophysical electron and Tau neutrino flux with six years of IceCube high energy cascade data

We report on the first measurement of the astrophysical neutrino flux using particle showers (cascades) in IceCube data from 2010-2015. Assuming standard oscillations, the astrophysical neutrinos in this dedicated cascade sample are dominated (∼90%) by electron and tau flavors. The flux, observed in the sensitive energy range from 16 TeV to 2.6 PeV, is consistent with a single power-law model as expected from Fermi-type acceleration of high energy particles at astrophysical sources. We find the flux spectral index to be γ=2.53±0.07 and a flux normalization for each neutrino flavor of φastro=1.66-0.27+0.25 at E0=100 TeV, in agreement with IceCube's complementary muon neutrino results and wit…

research product

An improved method for measuring muon energy using the truncated mean of dE/dx

Nuclear instruments & methods in physics research / A 703, 190 - 198 (2013). doi:10.1016/j.nima.2012.11.081

research product

Muon Energy Reconstruction and Atmospheric Neutrino Spectrum Unfolding with the IceCube Detector

research product

Flavor Ratio of Astrophysical Neutrinos above 35 TeV in IceCube

A diffuse flux of astrophysical neutrinos above $100\,\mathrm{TeV}$ has been observed at the IceCube Neutrino Observatory. Here we extend this analysis to probe the astrophysical flux down to $35\,\mathrm{TeV}$ and analyze its flavor composition by classifying events as showers or tracks. Taking advantage of lower atmospheric backgrounds for shower-like events, we obtain a shower-biased sample containing 129 showers and 8 tracks collected in three years from 2010 to 2013. We demonstrate consistency with the $(f_e:f_{\mu}:f_\tau)_\oplus\approx(1:1:1)_\oplus$ flavor ratio at Earth commonly expected from the averaged oscillations of neutrinos produced by pion decay in distant astrophysical sou…

research product

Measurement of atmospheric neutrino oscillations with three years of data from the full sky.

Initial release related to the measurement of atmospheric neutrino oscillations using three years of neutrino data from the full sky. IceCube results published in Physical Review Letters are competitive for the first time with the best measurements to date. Release limited to Δχ² maps in the (Δm², sin²(θ_23)) space for both the normal and inverted mass ordering. Additional information will be provided as follow-up data analyses are completed by the IceCube Collaboration.

research product

Search for contained neutrino events at energies above 30 TeV in 2 years of data

Neutrino observations are a unique probe of the universe's highest energy phenomena: neutrinos are able to escape from dense environments that photons cannot and are unambiguous tracers of hadronic interaction processes, in particular the acceleration of cosmic rays. We report on results of an all-sky search for these neutrinos at energies above 30 TeV in the cubic kilometer antarctic IceCube observatory between May 2010 and May 2012. The search follows up on the previous detection of two PeV neutrino events, with improved sensitivity and extended energy coverage down to approximately 30 TeV.

research product

IceCube-40 String Data: Searching for a Diffuse Flux of Astrophysical Muon Neutrinos

One of the main strategies used to look for astrophysical neutrinos with IceCube is the search for a diffuse flux of high-energy neutrinos from unresolved sources. A search was performed using data from the IceCube detector collected in its half completed configuration in which 40 strings operated between April 2008 and May 2009. 12,877 candidate neutrino events were obtained from this data sample.

research product

Search for sterile neutrinos with one year of IceCube data

The IceCube neutrino telescope at the South Pole has measured the atmospheric muon neutrino spectrum as a function of zenith angle and energy to search for the oscillation signatures of light sterile neutrinos. The primary result of this search derives from the first year of data, taken during 2011, of the full 86-string IceCube configuration.

research product

IceCube Oscillations: 3 years muon neutrino disappearance data

In the 1990s, Super-Kamiokande’s measurements of atmospheric neutrinos led to the acceptance of the mass-induced oscillation model. As of today, the three mixing angles, the solar mass splitting and the absolute value of the atmospheric mass splitting that control the oscillation phenomenon have been measured. We present a measurement of neutrino oscillations via atmospheric muon neutrino disappearance with three years of data of the completed IceCube neutrino detector. DeepCore, a region of denser instrumentation, enables the detection and reconstruction of atmospheric muon neutrinos between 10 GeV and 100 GeV, where a strong disappearance signal is expected.

research product

IceCube-22 Solar WIMP Data: Searching for Muon Neutrinos from Dark Matter Annihilations in the Sun

Relic dark matter in the galactic halo may become gravitationally trapped in the Sun and accumulate in its center, where it can annihilate each other, producing standard model particles, which may decay creating neutrinos. A search was performed using data from the IceCube detector in its 22 string configuration. The experimental dataset consists of 104.26 days livetime, corresponding to a set of runs recorded during the period when the Sun was below the horizon at the South Pole, between March 21st and September 23rd.

research product

Astrophysical muon neutrino flux in the northern sky with 2 years of IceCube data

Results from the IceCube Neutrino Observatory have recently provided compelling evidence for the existence of a high energy astrophysical neutrino flux utilizing a dominantly Southern Hemisphere data set consisting primarily of νe and ντ charged-current and neutral-current (cascade) neutrino interactions. Additionally, a fit for an astrophysical flux with an arbitrary spectral index is performed.

research product

Search for contained neutrino events at energies greater than 1 TeV in 2 years of data

The IceCube Neutrino Observatory was designed primarily to search for high-energy (TeV--PeV) neutrinos produced in distant astrophysical objects. Here we present the results of a search for neutrino interactions inside IceCube's instrumented volume between 1 TeV and 1 PeV in 641 days of data taken from 2010--2012. From these data we derive new constraints on the diffuse astrophysical neutrino spectrum,as well as the strongest upper limit yet on the flux of neutrinos from charmed-meson decay in the atmosphere.

research product

Observation of Astrophysical Neutrinos in Four Years of IceCube Data

The spectrum of cosmic rays includes the most energetic particles ever observed. The mechanism of their acceleration and their sources are, however, still mostly unknown. Observing astrophysical neutrinos can help solve this problem. This update extends the data-taking period by one more year to four years from 2010 to 2014 for a total livetime of 1347 days.

research product