0000000000208666
AUTHOR
Sergio Deganello
Direct nucleation of calcium oxalate dihydrate crystals onto the surface of living renal epithelial cells in culture
Direct nucleation of calcium oxalate dihydrate crystals onto the surface of living renal epithelial cells in culture. Background. The interaction of the most common crystal in human urine, calcium oxalate dihydrate (COD), with the surface of monkey renal epithelial cells (BSC-1 line) was studied to identify initiating events in kidney stone formation. Methods. To determine if COD crystals could nucleate directly onto the apical cell surface, a novel technique utilizing vapor diffusion of oxalic acid was employed. Cells were grown to confluence in the inner four wells of 24-well plates. At the start of each experiment, diethyloxalate in water was placed into eight adjacent wells, and the pla…
Annexin II is present on renal epithelial cells and binds calcium oxalate monohydrate crystals.
Attachment of newly formed crystals to renal epithelial cells appears to be a critical step in the development of kidney stones. The current study was undertaken to identify potential calcium oxalate monohydrate (COM) crystal-binding proteins on the surface of renal tubular cells. Apical membranes were prepared from confluent monolayers of renal epithelial cells (MDCKI line), and COM crystal affinity was used to isolate crystal-binding proteins that were then subjected to electrophoresis and electroblotting. Microsequencing of the most prominent COM crystal-binding protein (M(r) of 37 kD) identified it as annexin II (Ax-II). When exposed proteins on the surface of intact monolayers were bio…
Isolation From Human Calcium Oxalate Renal Stones of Nephrocalcin, a Glycoprotein Inhibitor of Calcium Oxalate Crystal Growth. Evidence That Nephrocalcin From Patients With Calcium Oxalate Nephrolithiasis is Deficient in γ-Carboxyglutamic Acid
We have determined that the organic matrix of calcium oxalate kidney stones contains a glycoprotein inhibitor ofcalcium oxalate crystal growth (nephrocalcin) that resembles nephrocalcin present in the urine of patients with calcium oxalate stones and differs from nephrocalcin from the urine of normal people. Pulverized calcium oxalate renal stones were extracted with 0.05M EDTA, pH 8.0; nephrocalcin eluted in five peaks using DEAE-cellulose column chromatography, and each peak was further resolved by Sephacryl S-200 column chromatography. Four ofthe fiveDEAE peaks corresponded to those usually found in nephrocalcin from urine; the fifth eluted at a lower ionic strength than any found in uri…
The effect of magnesium ions at the surface of calcium oxalate monohydrate crystals
Sialic acid-containing glycoproteins on renal cells determine nucleation of calcium oxalate dihydrate crystals
Sialic acid-containing glycoproteins on renal cells determine nucleation of calcium oxalate dihydrate crystals. Background The interaction between the surfaces of renal epithelial cells and calcium oxalate dihydrate (COD), the most common crystal in human urine, was studied to identify critical determinants of kidney stone formation. Methods A novel technique utilizing vapor diffusion of oxalic acid was employed to nucleate COD crystals onto the apical surface of living cells. Confluent monolayers were grown in the inner 4 wells of 24-well culture plates. To identify cell surface molecules that regulate crystal nucleation, cells were pretreated with a protease (trypsin or proteinase K) to a…
The effect of ions at the surface of calcium oxalate monohydrate crystals on cell-crystal interactions
Magnesium is an abundant ion in biologic systems, including renal tubular fluid; however, the precise role of magnesium during the interaction of calcium oxalate crystals with cells has not been previously defined. In addition, the respective roles of calcium and hydrogen ions during the cell-crystal bonding interaction remain poorly defined. Here we report an atomic level three-dimensional study of a single crystal of calcium oxalate monohydrate (COM; whewellite) which was bathed in a solution of magnesium hexahydrate for 1 year. Magnesium was not incorporated into the structure of whewellite to any significant degree. Instead, COM accepted magnesium primarily as an adsorbate in a binding …