0000000000210306
AUTHOR
Rolf Rauh
Enhancement of cytotoxicity of artemisinins toward cancer cells by ferrous iron
Abstract Iron(II) heme-mediated activation of the peroxide bond of artemisinins is thought to generate the radical oxygen species responsible for their antimalarial activity. We analyzed the role of ferrous iron in the cytotoxicity of artemisinins toward tumor cells. Iron(II)–glycine sulfate (Ferrosanol) and transferrin increased the cytotoxicity of free artesunate, artesunate microencapsulated in maltosyl-β-cyclodextrin, and artemisinin toward CCRF-CEM leukemia and U373 astrocytoma cells 1.5- to 10.3-fold compared with that of artemisinins applied without iron. Growth inhibition by artesunate and ferrous iron correlated with induction of apoptosis. Cell cycle perturbations by artesunate an…
Molecular modes of action of cantharidin in tumor cells
Cancer chemotherapy is often limited by patient's toxicity and tumor drug resistance indicating that new drug development and modification of existing drugs is critical for improving the therapeutic response. Traditional Chinese medicine is a rich source of potential anticancer agents. In particular, cantharidin (CAN), the active principle ingredient from the blister beetle, Mylabris, has anti-tumor activity, but the cytotoxic mechanism is unknown. In leukemia cells, cantharidin induces apoptosis by a p53-dependent mechanism. Cantharidin causes both DNA single- and double-strand breaks. Colony-forming assays with knockout and transfectant cells lines showed that DNA polymerase beta, but not…