0000000000210386

AUTHOR

Riccardo Rozza

0000-0001-6590-4228

Halloysite Nanotubes and Metal Corrosion Inhibitors: A Computational and Experimental Study

Halloysite nanotubes are widely used as a substrate for the controlled release of various types of molecules in an increasing number of applications. In this work, the interactions of halloysite silicic and aluminic surfaces with corrosion inhibitor compounds, such as benzotriazole, 8-hydroxyquinoline, 2-mercaptobenzimidazole, and 2-mercaptobenzothiazole, were investigated from a computational point of view. Two new halloysite compounds with salicylaldoxime and quinaldic acid were designed. Here we propose their synthesis, evaluate amounts of loading, and analyze the adsorption behavior.

research product

Switching from Aromatase Inhibitors to Dual Targeting Flavonoid-Based Compounds for Breast Cancer Treatment

Despite the significant outcomes attained by scientific research, breast cancer (BC) still represents the second leading cause of death in women. Estrogen receptor-positive (ER+) BC accounts for the majority of diagnosed BCs, highlighting the disruption of estrogenic signalling as target for first-line treatment. This goal is presently pursued by inhibiting aromatase (AR) enzyme or by modulating Estrogen Receptor (ER) α. An appealing strategy for fighting BC and reducing side effects and resistance issues may lie in the design of multifunctional compounds able to simultaneously target AR and ER. In this paper, previously reported flavonoid-related potent AR inhibitors were suitably modified…

research product

Computational study of water adsorption on halloysite nanotube in different pH environments

Abstract The comprehension of structural and energetic features of halloysite nanotube (HNT) in different chemical environments plays a crucial role in developing new HNT based materials. So far these aspects were investigated by means of laboratory techniques that hardly are able to provide hints at atomistic level of detail. Our investigation aims to obtain such accurate informations through density functional theory calculations on HNT models, in order to figure out the most stable forms of HNT under different pH conditions. It turns out that, at low pH, the preferred protonation sites are located in the inner aluminic surface while in alkaline medium the silicic layer can show delocaliz…

research product