0000000000210881
AUTHOR
Brant Carlson
Constraining spectral models of a terrestrial gamma‐ray flash from a terrestrial electron beam observation by the Atmosphere‐Space Interactions Monitor
Terrestrial Gamma ray Flashes (TGFs) are short flashes of high energy photons, produced by thunderstorms. When interacting with the atmosphere, they produce relativistic electrons and positrons, and a part gets bounded to geomagnetic field lines and travels large distances in space. This phenomenon is called a Terrestrial Electron Beam (TEB). The Atmosphere-Space Interactions Monitor (ASIM) mounted on-board the International Space Station detected a new TEB event on March 24, 2019, originating from the tropical cyclone Johanina. Using ASIM's low energy detector, the TEB energy spectrum is resolved down to 50 keV. We provide a method to constrain the TGF source spectrum based on the detected…
A new method reveals more TGFs in the RHESSI data
[1] This letter presents a new search algorithm for identifying Terrestrial Gamma ray Flashes (TGFs) in the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI) data. The algorithm has been applied to data from the period 2004–2006 and we have found more than twice as many TGFs as previously reported. The new TGFs follow the same geographical and seasonal variations as the previously reported TGFs. The match percentage between the new TGFs and World Wide Lightning Location Network (WWLLN) data is comparable to the RHESSI catalog TGFs. Our results shows that previous searches only identified the most intense events, and that there might be a large population of faint TGFs.
The First Terrestrial Electron Beam Observed by the Atmosphere‐Space Interactions Monitor
We report the first Terrestrial Electron Beam detected by the Atmosphere‐Space Interactions Monitor. It happened on 16 September 2018. The Atmosphere‐Space Interactions Monitor Modular X and Gamma ray Sensor recorded a 2 ms long event, with a softer spectrum than typically recorded for Terrestrial Gamma ray Flashes (TGFs). The lightning discharge associated to this event was found in the World Wide Lightning Location Network data, close to the northern footpoint of the magnetic field line that intercepts the International Space Station location. Imaging from a GOES‐R geostationary satellite shows that the source TGF was produced close to an overshooting top of a thunderstorm. Monte‐Carlo si…
The Modular X- and Gamma-Ray Sensor (MXGS)of the ASIM Payload on the International Space Station
The Modular X- and Gamma-ray Sensor (MXGS) is an imaging and spectral X- and Gamma-ray instrument mounted on the starboard side of the Columbus module on the International Space Station. Together with the Modular Multi-Spectral Imaging Assembly (MMIA) (Chanrion et al. this issue) MXGS constitutes the instruments of the Atmosphere-Space Interactions Monitor (ASIM) (Neubert et al. this issue). The main objectives of MXGS are to image and measure the spectrum of X- and γ-rays from lightning discharges, known as Terrestrial Gamma-ray Flashes (TGFs), and for MMIA to image and perform high speed photometry of Transient Luminous Events (TLEs) and lightning discharges. With these two instruments sp…
Spectral Analysis of Individual Terrestrial Gamma-ray Flashes Detected by ASIM
The Atmosphere-Space Interactions Monitor (ASIM) is the first instrument in space specifically designed to observe terrestrial gamma-ray flashes (TGFs). TGFs are high energy photons associated with lightning flashes and we perform the spectral analysis of 17 TGFs detected by ASIM. The TGF sample is carefully selected by rigorous selection criteria to keep a clean sample suitable for spectral analysis, that is, suitable count statistics, low instrumental effects, and reliable source location. Monte Carlo modeling of individual TGFs has been compared to the observed energy spectra to study the possible source altitudes and beaming geometries. A careful model of the instrumental effects has be…