0000000000211075
AUTHOR
Philipp Schattling
Covalently bonded layer-by-layer assembly of multifunctional thin films based on activated esters.
We demonstrate that chemically stable, multifunctional polymer thin films can be obtained using the layer-by-layer (LbL) deposition based on covalent bonds between adsorbing chains. Poly(pentafluorophenyl-4-vinylbenzoate) (P1) or poly(pentafluorophenylacrylate) (P2) polymers were assembled with poly(allyl amine) (PAAm) to yield LbL multilayer films through amide bond formation by the reaction between activated esters of P1 or P2 and amine groups in PAAm, which was quantitatively monitored by Fourier transform infrared spectroscopy (FT-IR). It was found that the difference in the solubility of P1 and P2 against ethanol, which was used as the solvent for PAAm, during the LbL deposition yields…
Functionalization and patterning of reactive polymer brushes based on surface reversible addition and fragmentation chain transfer polymerization
We present the synthesis of reactive polymer brushes prepared by surface reversible addition–fragmentation chain transfer polymerization of pentafluorophenyl acrylate. The reactive ester moieties can be used to functionalize the polymer brush film with virtually any functionality by simple post-polymerization modification with amines. Dithiobenzoic acid benzyl-(4-ethyltrimethoxylsilyl) ester was used as the surface chain transfer agent (S-CTA) and the anchoring group onto the silicon substrates. Reactive polymer brushes with adjustable molecular weight, high grafting density, and conformal coverage through the grafting-from approach were obtained. Subsequently, the reactive polymer brushes …
Nanotube Friendly Poly(N-isopropylacrylamide).
Poly(N-ispropylacrylamide) [PNIPAM] is a widely studied polymer for use in biological applications due to its lower critical solution temperature (LCST) being so close to the human body temperature. Unfortunately, attempts to combine carbon nanotubes (CNTs) with PNIPAM have been unsuccessful due to poor interactions between these two materials. In this work, a PNIPAM copolymer with 1 mol-% pyrene side group [p-PNIPAM] was used to produce a thermoresponsive polymer capable of stabilizing both single and multi-walled carbon nanotubes (MWNTs) in water. The presence of pyrene in the polymer chain lowers the LCST less than 4 °C and the interaction with nanotubes does not show any influence on LC…
Synthesis of CO2-responsive polymers by post-polymerization modification
Abstract We describe a general method to synthesize a double responsive polymer, exhibiting a temperature and CO 2 responsive behavior. The polymer derived from a controlled radical polymerization technique of pentafluorophenyl acrylate (PFPA), followed by a sequential post-polymerization modification of a CO 2 responsive- and thermo-responsive amines. Utilizing this approach three double responsive copolymers were synthesized, poly(3- N′,N′ -dimethylaminopropyl acrylamide- co - N -isopropyl acrylamide) (poly(DMPA- co -NIPAM)), poly( L -Arginine methyl ester acrylamide- co - N -isopropyl acrylamide) (poly(AME- co -NIPAM)) and poly( L -Arginine methyl ester acrylamide- co - N -cyclopropyl ac…
UV-tunable upper critical solution temperature behavior of azobenzene containing poly(methyl methacrylate) in aqueous ethanol
A series of azobenzene containing copolymers were synthesized by post-modification of poly(methyl methacrylate-co-pentafluorophenyl methacrylate) with an amine-functionalized azobenzene. Light- and thermo-responsive behavior of these copolymers was investigated in ethanol–water solvent mixtures with various amounts of ethanol. The upper critical solution temperature (UCST) of the polymer solutions, resulting from the poly(methyl methacrylate), was found to be highly tunable by the substitution degree of the copolymers as well as the ethanol content of the solvent mixture. In addition, the copolymers are light responsive based on the cis–trans isomerization of the azobenzene group under UV i…
Redox active polymers with phenothiazine moieties for nanoscale patterning via conductive scanning force microscopy
Redox active polymers with phenothiazine moieties have been synthesized by Atomic Transfer Radical Polymerization (ATRP). These novel polymers reveal bistable behaviour upon application of a bias potential above the oxidation threshold value. Using conductive Scanning Force Microscopy, two distinguishable conductivity levels were induced on a nanoscale level. These levels were related to a high conducting “On” and a low conducting “Off” state. The “On” state is generated by the oxidation of the phenothiazine side chains to form stable phenothiazine radical cations. The formation and stability of the radical sites was examined by cyclic voltammetry, electron spin resonance and optical spectr…
Reactive nanorods based on activated esterpolymers: a versatile template-assisted approach for the fabrication of functional nanorods
A new route for the fabrication of polymeric nanorods with functional moieties via post-modification of reactive nanorods is described. To this end reactive nanorods with a homogenous and narrow size distribution were fabricated by utilizing an anodic aluminium oxide (AAO) template-assisted approach. The nanorods are based on activated pentafluorophenyl esters, to enable quantitative post-modification with amines under very mild reaction conditions yielding the corresponding functionalized amide. Post-modification with fluorescent dyes as well as the conversion into well-dispersed rod-shaped poly(N-isopropylacrylamide) (PNIPAM) hydrogels that exhibit a thermal-responsive phase transition wa…
Multi-stimuli responsive polymers – the all-in-one talents
Stimuli-responsive polymers have gained increasing attention, which is attributed to the manifold applications they can be used for. Several years' intensive research was invested in stimuli-responsive polymers. Their stimuli-responsiveness led not only to novel responsive groups, which enabled the translation of an external physical impact into a change of a material property, but also to polymers that are equipped with more than one responsive group. The integration of several responsive moieties within one polymer yields smart polymers exhibiting complex responsive behaviour of the polymers. This review summarises recent developments in the area of multi-stimuli responsive polymers, layi…
Multi-responsive copolymers: using thermo-, light- and redox stimuli as three independent inputs towards polymeric information processing
We report on triple responsive polymers, exhibiting a distinct and reversible lower critical solution temperature in water that can be altered by light and redox stimuli, and we suggest their evaluation for molecular information processing.
Tailoring Properties of Carbon Nanotube Dispersions and Nanocomposites Using Temperature-Responsive Copolymers of Pyrene-Modified Poly(N-cyclopropylacrylamide)
Despite their immense potential, the ability to control the dispersion and microstructure of carbon nanotubes remains a hurdle for their widespread use. Stimuli-responsive polymers show conformational changes with an applied external stimulus (pH, temperature, light, etc.). The dispersion of carbon nanotubes by thermoresponsive polymers is shown to enable the macroscopic properties of aqueous suspensions to be tailored as a function of temperature. This work presents the synthesis, characterization, and use of temperature-responsive poly(N-cyclopropylacrylamide) (PNCPA) polymers containing 1, 3, and 5 mol % pyrene-bearing repeat units to tailor the dispersion state of single-walled carbon n…
Tuning the upper critical solution temperature behavior of poly(methyl methacrylate) in aqueous ethanol by modification of an activated ester comonomer
A statistical copolymer of methyl methacrylate (MMA) and pentafluorophenyl methacrylate (PFPMA, 6 mol%) exhibits upper critical solution temperature (UCST) behavior in aqueous ethanol solutions tunable by post-polymerization modification with different amines. The phase transition behavior of the obtained copolymers in aqueous ethanol was evaluated in detail. As expected, all copolymers reveal an upper critical solution temperature with 55 vol% or higher ethanol content. Furthermore, the solubility in aqueous ethanol of the copolymer can be increased by the introduction of hydrophilic moieties. When hydrophobic substituents are introduced a decrease in solubility was observed with low conte…