0000000000211235
AUTHOR
Enzo Tiezzi
Deuterium isotope effect on the induction period of the cerium catalyzed Belousov-Zhabotinsky reaction
Abstract In this work we present results about the deuterium isotopic effect on the global kinetics of a cerium catalyzed Belousov–Zhabotinsky reaction. A nonlinear dependence of the induction period upon the percentage of deuterated reactants was found in batch conditions. In order to understand this result, we investigated two reaction pathways responsible for the length of the induction period, namely: (a) the reaction between the enolic form of the malonic acid with molecular bromine and (b) the oxidation of malonic acid by the Ce(IV) ion. In both cases we obtained a linear dependence of the kinetic constants on the percentage of deuterated reactants. Nevertheless, by inserting the expe…
Isotopic Effect on the Kinetics of the Belousov-Zhabotinsky Reaction
In this work we present results about the deuterium isotope effect on the global kinetics of a Belousov-Zhabotinsky reaction in batch conditions. A nonlinear dependence of the Induction Period upon the percentage of deuterated reactants was found. The isotopic effect on the bromination reaction of malonic acid was evaluated.
Arsenic Pollution in the Southwest of Tuscany: Monitoring of Cornia Catchment Basin
The territory of Colline Metallifere, in SW Tuscany, is characterized by the presence of strong arsenic anomalies. Some hypotheses, formulated in the last 20 years, based on geological and mineralogical factors have failed to explain the peculiar distribution of this toxic element in soil, fluvial sediments and ground water. Our research group has been studying for four years the problem of arsenic pollution in this district to investigate the origin and the mechanism of As diffusion in the environment. In particular we started a comparative study based on the extensive sampling of the stream sediments of the main waterways of Colline Metallifere (Pecora, Bruna and Cornia and their tributar…
Dynamics of Pattern Formation in Biomimetic Systems
This paper is an attempt to conceptualize pattern formation in self-organizing systems and, in particular, to understand how structures, oscillations or waves arise in a steady and homogenous environment, a phenomenon called symmetry breaking. The route followed to develop these ideas was to couple chemical oscillations produced by Belousov-Zhabotinsky reaction with confined reaction environments, the latter being an essential requirement for any process of Life. Special focus was placed on systems showing organic or lipidic compartments, which represent more reliable biomimetic matrices.
Interplay between the Belousov-Zhabotinsky reaction-diffusion system and biomimetic matrices
Abstract Interactions between reaction–diffusion systems and restricted host environments are a subject of widespread interest. In this work the behaviour of the Belousov–Zhabotinsky reaction was investigated in lamellar phases formed by phospholipid bilayers with relevance for biological systems. The influence of the reactive medium on the structure of the lipid matrix and, in turn, the influence of the matrix on the dynamical evolution of chemical patterns, were studied by small angle scattering.