0000000000211410

AUTHOR

Eva Rupprecht

Thermostability of Two Cyanobacterial GrpE Thermosensors

GrpE proteins act as co-chaperones for DnaK heat-shock proteins. The dimeric protein unfolds under heat stress conditions, which results in impaired interaction with a DnaK protein. Since interaction of GrpE with DnaK is crucial for the DnaK chaperone activity, GrpE proteins act as a thermosensor in bacteria. Here we have analyzed the thermostability and function of two GrpE homologs of the mesophilic cyanobacterium Synechocystis sp. PCC 6803 and of the thermophilic cyanobacterium Thermosynechococcus elongatus BP1. While in Synechocystis an N-terminal helix pair of the GrpE dimer appears to be the thermosensing domain and mainly mediates GrpE dimerization, the C-terminal four-helix bundle i…

research product

Thylakoid Membrane Maturation and PSII Activation Are Linked in Greening Synechocystis sp. PCC 6803 Cells

Abstract Thylakoid membranes are typical and essential features of both chloroplasts and cyanobacteria. While they are crucial for phototrophic growth of cyanobacterial cells, biogenesis of thylakoid membranes is not well understood yet. Dark-grown Synechocystis sp. PCC 6803 cells contain only rudimentary thylakoid membranes but still a relatively high amount of phycobilisomes, inactive photosystem II and active photosystem I centers. After shifting dark-grown Synechocystis sp. PCC 6803 cells into the light, “greening” of Synechocystis sp. PCC 6803 cells, i.e. thylakoid membrane formation and recovery of photosynthetic electron transport reactions, was monitored. Complete restoration of a t…

research product

Similarities and singularities of three DnaK proteins from the cyanobacterium Synechocystis sp. PCC 6803.

In the genome of completely sequenced mesophilic cyanobacterium Synechocystis sp. PCC 6803 three DnaK proteins are encoded, which share a high degree of sequence identity in their N-terminal ATPase region as well as in the adjacent peptide-binding domain. However, as typical for DnaK proteins, the C-termini of the three Synechocystis proteins are highly diverse. To study the functions of the three Synechocystis DnaK proteins in more detail, we have analyzed the abundance of the individual proteins in Synechocystis cells as well as dnaK expression under various stress conditions. The presented results show that all three Synechocystis DnaK proteins interact with the same GrpE nucleotide exch…

research product

Specific and promiscuous functions of multiple DnaJ proteins in Synechocystis sp. PCC 6803

Cyanobacterial genomes typically encode multiple Hsp70 (DnaK) and Hsp40 (DnaJ) chaperones, and in the genome of the cyanobacteriumSynechocystisPCC 6803, three DnaK proteins are encoded together with seven DnaJ proteins. While only two of the DnaJ proteins can complement the growth defect of anEscherichia coliΔdnaJstrain, only disruption of thednaJgenesll0897resulted in a growth defect at elevated temperatures. Based on the domain structure and the phenotype observed following disruption of the encoding gene, Sll0897 can be classified as a canonical heat-shock protein inSynechocystis. Furthermore, mostdnaJgenes could be deleted individually, whereas disruption of the gene encoding the DnaJ S…

research product