0000000000212565

AUTHOR

Nassima Ait Lahmidi

showing 10 related works from this author

Sugar transport and partitioning during arbuscular mycorrhizal symbiosis (from basic to applied science)

2015

The nutrient exchanges between plant and fungus are the key elements of the arbuscular mycorrhizal (AM) symbiosis. The fungus improves the plant uptake of mineral nutrients, mainly phosphate, while the plant provides the fungus with photosynthetically assimilated carbohydrates. Although knowledge about the mechanisms underlying nutrient exchanges between the symbiotic partners still remains very limited, recent advances in mycorrhiza research have allowed identification and functional characterization of fungal sugar transport systems. The present thesis firstly focused on the identification and characterization of sugar transporters from the model arbuscular mycorrhizal fungus (AMF) Rhizop…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV.BV] Life Sciences [q-bio]/Vegetal Biologythese
researchProduct

Sugar exchanges in arbuscular mycorrhiza: RiMST5 and RiMST6, two novel Rhizophagus irregularis monosaccharide transporters, are involved in both suga…

2016

SPE IPM INRA UB CT1; International audience; Arbuscular mycorrhizal (AM) fungi are associated with about 80% of land plants. AM fungi provide inorganic nutrients to plants and in return up to 20% of the plant-fixed CO2 is transferred to the fungal symbionts. Since AM fungi are obligate biotrophs, unraveling how sugars are provided to the fungus partner is a key for understanding the functioning of the symbiosis. In this study, we identified two new monosaccharide transporters from Rhizophagus irregularis (RiMST5 and RiMST6) that we characterized as functional high affinity monosaccharide transporters. RiMST6 was characterized as a glucose specific, high affinity H(+) co-transporter. We prov…

0106 biological sciences0301 basic medicineRhizophagus irregularisLightPhysiology[SDV]Life Sciences [q-bio]Plant Sciencearbuscular mycorrhizal fungus01 natural sciencesrhizophagus irregularisGlomeromycotaSoilGene Expression Regulation PlantMycorrhizaeMedicagoPhylogeny2. Zero hungerMutualism (biology)Fungal proteinReverse Transcriptase Polymerase Chain Reactionglucose specificMonosaccharidesfood and beverageshigh affinity H+ co-transporterhigh affinity transporterArbuscular mycorrhizaBiochemistry[SDE]Environmental SciencesFungusSaccharomyces cerevisiaeBiologyFungal Proteins03 medical and health sciencesSymbiosisStress PhysiologicalBotanyGenetics[SDV.BV]Life Sciences [q-bio]/Vegetal BiologyRNA MessengerGlomeromycotaObligateCell MembraneGenetic Complementation TestfungiMST5MST6Membrane Transport Proteins15. Life on landmonosaccharide transporterbiology.organism_classification030104 developmental biologyGlucose010606 plant biology & botany
researchProduct

Identification of sugar transporters in arbuscular mycorrhiza, from basic to applied science

2012

Our study focuses on sugar transporters from both plant and fungal partners at the symbiotic interface to better understand biotrophic exchange systems. Thereby, a collection of putative contigs and ESTs of hexose transporters from Medicago truncatula and Fragaria x ananassa will be processed. The full length sequences will be cloned for functional complementation and uptake experiments in transport deficient yeast mutants. This work also investigates the influence of different mycorrhizal fungi on (1) the expression level of sugar transporters and (2) the economically relevant part of F. x ananassa by analyzing its impact on the plant and the fruit. To this aim, combination of phenological…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesarbuscular mycorrhiza[SDV]Life Sciences [q-bio]transport[SDE]Environmental Sciencesfood and beveragessugar transport[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologymedicago truncatula
researchProduct

Expression of Sorghum bicolor ammonium transporters upon colonization with arbuscular mycorrhizal fungi

2012

Arbuscular mycorrhizal fungi (AMF) are important plant symbionts, trading mineral nutrients beyond the reach of roots, in particular ammonium, in exchange to their host’s photosynthetic products. Sorghum bicolor is one of the world's leading cereal crops, providing food, fibre and fuel across a range of environments and production systems. It has a particular ability to be productive even under strongly adverse conditions, tolerating much more severe drought than most other grain crops. As its genome has recently been sequenced, we have characterized all eight members of the ammonium transporter (AMT) family and studied their expression in different tissues of field-grown plants. While most…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencessorghum bicolorammonium transporters (AMT)[SDV]Life Sciences [q-bio]fungi[SDE]Environmental Sciencesfood and beverages[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologyarbuscular mycorrhizal fungiglomus mosseae
researchProduct

Is co-inoculation of strawberry plants with plant growth-promoting bacteria and arbuscular mycorrhizal fungi leading to an improvement of growth and …

2014

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesco-inoculationfragaria x ananassa[SDV]Life Sciences [q-bio]PGPR[SDE]Environmental Sciencesmycorrhiza
researchProduct

Is co-inoculation with plant growth promoting bacteria and arbuscular mycorrhizal fungi increasing strawberry production yields ?

2014

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesco-inoculationfragaria x ananassaPGPR[SDV]Life Sciences [q-bio][SDE]Environmental Sciencesmycorrhiza;PGPR;co-inoculation;fragaria x ananassamycorrhiza[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biology
researchProduct

The competitiveness to form nodules shapes the capacities of Rhizobium leguminosarum sv viciae communities to promote symbiosis with specific hosts

2019

National audience; Cultivated fabeae legumes (pea, fababean, lentil) develop root nodules resulting from the symbiotic interaction with Rhizobium leguminosarum sv. viciae (Rlv). Individual Rlv bacteria are able to associate with various potential hosts, but in soil they are in mixture and they display a wide range of competitiveness to form nodules (CFN). Because in Rlv, CFN and capacity to fix nitrogen are genetically independent, CFN limits the effectiveness of inoculation strategies as efficient bacteria are often outcompeted by poorly efficient Rlv bacteria of the soil community. We developed a strategy to identify bacterial genes controlling CFN. A worldwide collection of 240 Rlv isola…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV]Life Sciences [q-bio][SDE]Environmental Sciencesfood and beverages[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biology[SHS] Humanities and Social Sciences[SHS]Humanities and Social Sciences
researchProduct

Sugar exchanges in arbuscular mycorrhiza : Characterization and role of two new monosaccharide transporters from the model fungus Rhizophagus irregul…

2014

[SDV] Life Sciences [q-bio][SDE] Environmental Sciences[SDV]Life Sciences [q-bio][SDE]Environmental Sciences[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biology
researchProduct

Identification of sugar transporters in arbuscular mycorrhiza

2012

Our study focuses on sugar transporters from both plant and fungal partners at the symbiotic interface to better understand biotrophic exchange systems. Thereby, a collection of putative contigs and ESTs of hexose transporters from Medicago truncatula and Fragaria x ananassa will be processed. The full length sequences will be cloned for functional complementation and uptake experiments in transport deficient yeast mutants. This work also investigates the influence of different mycorrhizal fungi on (1) the expression level of sugar transporters and (2) the economically relevant part of F. x ananassa by analyzing its impact on the plant and the fruit. To this aim, combination of phenological…

[SDV] Life Sciences [q-bio][SDE] Environmental Sciencesarbuscular mycorrhiza[SDV]Life Sciences [q-bio]transport[SDE]Environmental Sciencesfood and beveragessugar transport[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologymedicago truncatula
researchProduct

Identification de transporteurs de sucres marqueurs de la mycorhize à arbuscules

2012

[SDV] Life Sciences [q-bio][SDE] Environmental SciencesMedicago truncatula transport sugar transport arbuscular mycorrhizaarbuscular mycorrhiza[SDV]Life Sciences [q-bio]transport[SDE]Environmental Sciencessugar transport[SDV.BV]Life Sciences [q-bio]/Vegetal Biology[SDV.BV] Life Sciences [q-bio]/Vegetal Biologymedicago truncatula
researchProduct