0000000000212717

AUTHOR

Dagmar Tscherko

Abundance of NARG, NIRK and NOSZ genes of denirifying bacteria during primary successions of a glacier foreland

research product

Primary succession changes diversity, abundance and function of soil microorganisms across glacier forelands

research product

Microbial succession of nitrate-reducing bacteria in the rhizosphere of Poa alpina across a glacier foreland in the Central Alps

International audience; Changes in community structure and activity of the dissimilatory nitrate-reducing community were investigated across a glacier foreland in the Central Alps to gain insight into the successional pattern of this functional group and the driving environmental factors. Bulk soil and rhizosphere soil of Poa alpina was sampled in five replicates in August during the flowering stage and in September after the first snowfalls along a gradient from 25 to 129 years after deglaciation and at a reference site outside the glacier foreland (> 2000 years deglaciated). In a laboratory-based assay, nitrate reductase activity was determined colorimetrically after 24 h of anaerobic inc…

research product

Abundance of narG , nirS , nirK , and nosZ Genes of Denitrifying Bacteria during Primary Successions of a Glacier Foreland

ABSTRACT Quantitative PCR of denitrification genes encoding the nitrate, nitrite, and nitrous oxide reductases was used to study denitrifiers across a glacier foreland. Environmental samples collected at different distances from a receding glacier contained amounts of 16S rRNA target molecules ranging from 4.9 × 10 5 to 8.9 × 10 5 copies per nanogram of DNA but smaller amounts of narG , nirK , and nosZ target molecules. Thus, numbers of narG , nirK , nirS , and nosZ copies per nanogram of DNA ranged from 2.1 × 10 3 to 2.6 × 10 4 , 7.4 × 10 2 to 1.4 × 10 3 , 2.5 × 10 2 to 6.4 × 10 3 , and 1.2 × 10 3 to 5.5 × 10 3 , respectively. The densities of 16S rRNA genes per gram of soil increased with…

research product