0000000000213324
AUTHOR
G. Launay
The generic local structure of time-optimal synthesis with a target of codimension one in dimension greater than two
In previous papers, we gave in dimension 2 and 3 a classification of generic synthesis of analytic systems\(\dot v(t) = X(v(t)) + u(t)Y(v(t))\) with a terminal submanifoldN of codimension one when the trajectories are not tangent toN. We complete here this classification in all generic cases in dimension 3, giving a topological classification and a model in each case. We prove also that in dimensionn≥3, out of a subvariety ofN of codimension there, we have described all the local synthesis.
Classification générique de synthèses temps minimales avec cible de codimension un et applications
In this article we consider the problem of constructing the optimal closed loop control in the time minimal control problem, with terminal constraints belonging to a manifold of codimension one, for systems of the form v = X + uY, v ϵ R2, R3, |u| ≤ 1 under generic assumptions. The analysis is localized near the terminal manifold and is motivated by the problem of controlling a class of chemical systems.