0000000000213495
AUTHOR
Sabine Matthias-maser
The size distribution of marine atmospheric aerosol with regard to primary biological aerosol particles over the South Atlantic Ocean
Abstract The marine atmosphere is characterized by particles which originate from the ocean and by those which reached the air by advection from the continent. The bubble-burst mechanism produces both sea salt as well as biological particles. The following article describes the determination of the size distribution of marine aerosol particles with special emphasis on the biological particles. Th data were obtained on three cruises with the German Research Vessel “METEOR” crossing the South Atlantic Ocean. The measurements showed that biological particles amount to 17% in number and 10% in volume concentration. Another type of particle became obvious in the marine atmosphere, the biological…
A method to identify biological aerosol particles with radius > 0.3μmfor the determination of their size distribution
Abstract The relevance of biological aerosol will be demonstrated. A method to determine the sizedistribution of the biological aerosols is shown, which gives the opportunity to determine a lower limit of the biological particles. For evaluation a light microscope and a scanning electron microscope equipped with an energy dispersive x-ray spectrometer are used.
The size distribution of primary biological aerosol particles in cloud water on the mountain Kleiner Feldberg/Taunus (FRG)
During the field campaign, FELDEX 95 cloud water samples were collected and the insoluble particles were analysed by single particle analysis in order to determine the content of primary biological aerosol particles (PBAP). It is found that 25% of the total insoluble particles are biological ones. During cloud events with increasing wind velocity, the concentration of biological particles also increases. Anthropogenic influence leads to a higher amount of both total and biological particles. Within the size distribution, the percentage of biological particles decreases with increasing radius.
The ice nucleating ability of pollen
Abstract Laboratory experiments are described where the water uptake by a variety of pollen was studied quantitatively, followed by the investigation of the ice nucleating ability of four kinds of pollen in the deposition and the condensation freezing modes. The diameters of the pollen selected for the freezing experiments were between 25 and 70 μm. The freezing experiments in the deposition mode including also pollen resuspended from decayed leaves, and crushed pollen grains were carried out at different temperatures down to −33 °C combined with various supersaturations with respect to ice up to 35%. The condensation freezing experiments were carried out at temperatures down to −18 °C at s…
Instrumentation of the Do 128 D-IBUF for Airborne Measurements at Different Campaigns of the Collaborative Research Centre
Composition and diurnal variability of the natural Amazonian aerosol
As part of the Large-Scale Biosphere-Atmosphere Experiment in Amazonia (LBA)-Cooperative LBA Airborne Regional Experiment (CLAIRE) 2001 campaign, separate day and nighttime aerosol samples were collected in July 2001 at a ground-based site in Amazonia, Brazil, in order to examine the composition and temporal variability of the natural “background” aerosol. A combination of analytical techniques was used to characterize the elemental and ionic composition of the aerosol. Major particle types larger than ∼0.5 μm were identified by electron and light microscopy. Both the coarse and fine aerosol were found to consist primarily of organic matter (∼70 and 80% by mass, respectively), with the coar…
The ice nucleating ability of pollen:
Abstract Laboratory tests were conducted of the ice nucleating ability of four kinds of pollen in the immersion and the contact freezing modes. The diameters of the selected pollen were between 25 and 70 μm. The experiments were carried out at the Mainz vertical wind tunnel with freely suspended supercooled droplets at temperatures down to −28 °C. The immersion freezing experiments were conducted with drops of radii between 250 and 375 μm formed from distilled water with a defined amount of pollen added. The drops were freely floated in the wind tunnel while being supercooled. For the contact freezing experiments, a short burst of pollen was allowed to collide with freely suspended, superco…