0000000000214252

AUTHOR

Vladyslav Pauk

Lepton Universality Test in the Photoproduction ofe−e+Versusμ−μ+Pairs on a Proton Target

In view of the significantly different proton charge radius extracted from muonic hydrogen Lamb shift measurements as compared to electronic hydrogen spectroscopy or electron-scattering experiments, we study in this Letter the photoproduction of a lepton pair on a proton target in the limit of very small momentum transfer as a way to provide a test of the lepton universality when extracting the proton charge form factor. By detecting the recoiling proton in the γp→l^{-}l^{+}p reaction, we show that a measurement of a ratio of e^{-}e^{+}+μ^{-}μ^{+} over e^{-}e^{+} cross sections with an absolute precision of 7×10^{-4} would allow for a test to distinguish, at the 3σ level, between the two di…

research product

Determination of the pole position of the lightest hybrid meson candidate

Mapping states with explicit gluonic degrees of freedom in the light sector is a challenge, and has led to controversies in the past. In particular, the experiments have reported two different hybrid candidates with spin-exotic signature, pi1(1400) and pi1(1600), which couple separately to eta pi and eta' pi. This picture is not compatible with recent Lattice QCD estimates for hybrid states, nor with most phenomenological models. We consider the recent partial wave analysis of the eta(') pi system by the COMPASS collaboration. We fit the extracted intensities and phases with a coupled-channel amplitude that enforces the unitarity and analyticity of the S-matrix. We provide a robust extracti…

research product

Dilepton photoproduction on a deuteron target

We investigate the sensitivity of the cross section for lepton pair production off a deuteron target, $\gamma d \to l^+ l^- d$, to the deuteron charge radius. We show that for small momentum transfers the Bethe-Heitler process dominates, and that it is sensitive to the charge radius such that a cross section ratio measurement of about $0.1 \%$ relative accuracy could give a deuteron charge radius more accurate that the current electron scattering value and sufficiently accurate to distinguish between the electronic and muonic atomic values.

research product

Beam normal spin asymmetry for the ep→eΔ(1232) process

We calculate the single spin asymmetry for the $e p \to e \Delta(1232)$ process, for an electron beam polarized normal to the scattering plane. Such single spin asymmetries vanish in the one-photon exchange approximation, and are directly proportional to the absorptive part of a two-photon exchange amplitude. As the intermediate state in such two-photon exchange process is on its mass shell, the asymmetry allows one to access for the first time the on-shell $\Delta \to \Delta$ as well as $N^\ast \to \Delta$ electromagnetic transitions. We present the general formalism to describe the $e p \to e \Delta$ beam normal spin asymmetry, and provide a numerical estimate of its value using the nucle…

research product

Light-by-light scattering sum rules constraining meson transition form factors

Relating the forward light-by-light scattering to energy weighted integrals of the \gamma* \gamma -fusion cross sections, with one real photon (\gamma) and one virtual photon (\gamma*), we find two new exact super-convergence relations. They complement the known super-convergence relation based on the extension of the GDH sum rule to the light-light system. We also find a set of sum rules for the low-energy photon-photon interaction. All of the new relations are verified here exactly at leading order in scalar and spinor QED. The super-convergence relations, applied to the \gamma* \gamma -production of mesons, lead to intricate relations between the \gamma \gamma -decay widths or the \gamma…

research product

Anomalous magnetic moment of the muon in a dispersive approach

We present a new general dispersive formalism for evaluating the hadronic light-by-light scattering contribution to the anomalous magnetic moment of the muon. In the suggested approach, this correction is related to the imaginary part of the muon's electromagnetic vertex function. The latter may be directly related to measurable hadronic processes by means of unitarity and analyticity. As a test we apply the introduced formalism to the case of meson pole exchanges and find agreement with the direct two-loop calculation.

research product

Low-energy doubly virtual Compton scattering from dilepton electroproduction on a nucleon

We propose a new way to experimentally determine the subleading low-energy structure constant of doubly virtual Compton scattering on a proton. Such empirical determination will reduce the theoretical model error in estimates of the hadronic correction to the muonic hydrogen Lamb shift. We demonstrate that the dilepton forward-backward asymmetry in the e−p→e−pe−e+ process, which can be accessed at electron scattering facilities, yields a large sensitivity to this so far unknown low-energy constant.

research product

Lepton universality test in the photoproduction of $e^- e^+$ versus $\mu^- \mu^+$ pairs on a proton target

In view of the significantly different proton charge radius extracted from muonic hydrogen Lamb shift measurements as compared to electronic hydrogen spectroscopy or electron scattering experiments, we study in this work the photoproduction of a lepton pair on a proton target in the limit of very small momentum transfer as a way to provide a test of the lepton universality when extracting the proton charge form factor. By detecting the recoiling proton in the $\gamma p \to l^- l^+ p$ reaction, we show that a measurement of a ratio of $e^-e^+ + \mu^-\mu^+$ over $e^-e^+$ cross sections with a relative precision of around 2%, would allow for a test to distinguish between the two different prot…

research product

The anomalous magnetic moment of the muon in the Standard Model

We are very grateful to the Fermilab Directorate and the Fermilab Theoretical Physics Department for their financial and logistical support of the first workshop of the Muon g -2 Theory Initiative (held near Fermilab in June 2017) [123], which was crucial for its success, and indeed for the successful start of the Initiative. Financial support for this workshop was also provided by the Fermilab Distinguished Scholars program, the Universities Research Association through a URA Visiting Scholar award, the Riken Brookhaven Research Center, and the Japan Society for the Promotion of Science under Grant No. KAKEHNHI-17H02906. We thank Shoji Hashimoto, Toru Iijima, Takashi Kaneko, and Shohei Nis…

research product

Analytic structure ofϕ4theory using light-by-light sum rules

Abstract We apply a sum rule for the forward light-by-light scattering process within the context of the ϕ 4 quantum field theory. As a consequence of the sum rule a stringent causality criterion is presented and the resulting constraints are studied within a particular resummation of graphs. Such resummation is demonstrated to be consistent with the sum rule to all orders of perturbation theory. We furthermore show the appearance of particular non-perturbative solutions within such approximation to be a necessary requirement of the sum rule. For a range of values of the coupling constant, these solutions manifest themselves as a physical bound state and a K-matrix pole. For another domain …

research product