0000000000214293

AUTHOR

Roland Glowinski

showing 4 related works from this author

A Douglas–Rachford method for sparse extreme learning machine

2019

Operator splittingSparse regularizationAlgorithmExtreme learning machineMathematicsMethods and Applications of Analysis
researchProduct

A New Augmented Lagrangian Approach for $L^1$-mean Curvature Image Denoising

2015

Variational methods are commonly used to solve noise removal problems. In this paper, we present an augmented Lagrangian-based approach that uses a discrete form of the L1-norm of the mean curvature of the graph of the image as a regularizer, discretization being achieved via a finite element method. When a particular alternating direction method of multipliers is applied to the solution of the resulting saddle-point problem, this solution reduces to an iterative sequential solution of four subproblems. These subproblems are solved using Newton’s method, the conjugate gradient method, and a partial solution variant of the cyclic reduction method. The approach considered here differs from ex…

ta113Mean curvatureDiscretizationimage denoisingAugmented Lagrangian methodApplied MathematicsGeneral Mathematicsmean curvaturekuvankäsittelyTopologyFinite element methodimage processingsymbols.namesakeLagrangian relaxationLagrange multiplierConjugate gradient methodsymbolsApplied mathematicsaugmented Lagrangian methodalternating direction methods of multipliersvariational modelMathematicsCyclic reductionSIAM Journal on Imaging Sciences
researchProduct

A Domain Decomposition/Nash Equilibrium Methodology for the Solution of Direct and Inverse Problems in Fluid Dynamics with Evolutionary Algorithms

2008

Mathematical optimizationsymbols.namesakeNash equilibriumGenetic algorithmFluid dynamicsEvolutionary algorithmA domainsymbolsDecomposition (computer science)Inverse problemMathematics
researchProduct

A GPU-accelerated augmented Lagrangian based L1-mean curvature Image denoising algorithm implementation

2015

This paper presents a graphics processing unit (GPU) implementation of a recently published augmented Lagrangian based L1-mean curvature image denoising algorithm. The algorithm uses a particular alternating direction method of multipliers to reduce the related saddle-point problem to an iterative sequence of four simpler minimization problems. Two of these subproblems do not contain the derivatives of the unknown variables and can therefore be solved point-wise without inter-process communication. Inparticular, this facilitates the efficient solution of the subproblem that deals with the non-convex term in the original objective function by modern GPUs. The two remaining subproblems are so…

GPU výpočtyOpenCLimage denoisingodstranění šumu z obrazumean curvaturekuvankäsittelystřední zakřiveníaugmented Lagrangian methodGPU computingzpracování obrazurozšířená Lagrangianova metodaimage processing
researchProduct