Protein and glycerol contents affect physico-chemical properties of soy protein isolate-based edible films
Abstract This study was conducted to determine the effect of both soy protein and glycerol contents on physico-chemical properties of soy protein isolate-based edible (SPI) films. The aim of this study was to better understand the influence of SPI and GLY contents on the behavior of the physico-chemical properties of soy protein isolate-based films. Films were casted from heated (70 °C for 20 min) alkaline (pH 10) aqueous solutions of SPI at 6, 7, 8, and 9 (w/w %), glycerol (50%, w/w, of SPI) and SPI at 7 (w/w %), glycerol (40, 60, 70 %, w/w of SPI). Water vapor permeability (WVP), was measured at 25 °C and for four different relative humidities (30–100%, 30–84%, 30–75%, 30–53%). Surface pr…
Effect of modified starch or maltodextrin incorporation on the barrier and mechanical properties, moisture sensitivity and appearance of soy protein isolate-based edible films
Abstract This work aimed to study the effect of starch (acetylated di-starch phosphate and starch acetate) and maltodextrin (DE 10.2 and DE 15.6) on the properties of soy protein isolate (SPI) films. Films were cast from heated (70 °C for 20 min) alkaline (pH 10) aqueous solutions of soy protein isolate (8%) containing glycerol (50% of SPI) as a plasticizer and starch or maltodextrin (20% of SPI). For all types of films, water vapor sorption kinetics during 24 h at 25 °C and 75% relative humidity (RH), diffusion coefficient of water vapor, water vapor permeability at 25 °C for two relative humidity differentials (40–75 and 40–100%), tensile strength and elongation at break, color and micros…
Effect of oil lamination between plasticized starch layers on film properties
International audience; To reduce the hygroscopic character of biodegradable starch-based films, rapeseed oil was incorporated by lamination (starch-oil-starch 3-layers technique). The lipid lamination followed by starch solution casting step induced an emulsion type structure of dried films. Composite films are more opalescent and glossier than fatty free starch films. For all the films, structure is heterogeneous in the cross-section only. Adding fat induced a twice decrease of the tensile strength. Thermal gravimetry analysis did not show differences between films with and without oil. Lipid reduced the moisture absorption particularly at higher RH as well as the surface swelling index, …
Relevance of Interactions between Starch-based Coatings and Plum Fruit Surfaces: A Physical-Chemical Analysis
In order to extend the shelf life of the fruit, improve appearance, and to keep all nutrition properties of the plum from diminishing, edible coatings comprised of wheat starch and wheat starch&ndash
Water vapour permeability, thermal and wetting properties of whey protein isolate based edible films
Abstract This study deals with the effect of whey protein isolate (WPI) and glycerol (GLY) used as a plasticizer on some physical properties of cast whey protein isolate (WPI) films. Films were prepared from heated (80 °C for 30 min) aqueous solutions of WPI at 7, 8, 9 and 10% (w/w), GLY (40%, w/w, of WPI) and WPI at 8% (w/w), GLY (30, 40, and 60%, w/w, of WPI). For all types of films, water vapour permeability for four relative humidity differentials (30–100%, 30–84%, 30–75%, and 30–53%), surface and thermal properties were measured. Varying the proportion of WPI and GLY in edible films had some effect on water vapour permeability, wetting and thermal properties of WPI films. A cumulative …
Effect of Oxidized Potato Starch on the Physicochemical Properties of Soy Protein Isolate-Based Edible Films
The influence of oxidized starch on the physicochemical properties of cast soy protein isolate films is determined in this study. Films were cast from heated (70 °C for 20 min) alkaline (pH=10) aqueous solutions of 7 % soy protein isolate containing 50 % (by mass) glycerol as a plasticizer and different levels of added oxidized starch (0, 5, 10, 15, and 20 %, by mass). For all types of films, opacity, contact angle, tensile strength, elongation at break, water vapour permeability, measured at 25 °C for four relative humidity differentials (30–53, 30–75, 30–84 and 30–100 %), differential scanning calorimetry and microstructure were determined after conditioning film specimens at 25 °C and 30…
Liquid and vapour water transfer through whey protein/lipid emulsion films
BACKGROUND: Edible films and coatings based on protein/lipid combinations are among the new products being developed in order to reduce the use of plastic packaging polymers for food applications. This study was conducted to determine the effect of rapeseed oil on selected physicochemical properties of cast whey protein films. RESULTS: Films were cast from heated (80 °C for 30 min) aqueous solutions of whey protein isolate (WPI, 100 g kg−1 of water) containing glycerol (50 g kg−1 of WPI) as a plasticiser and different levels of added rapeseed oil (0, 1, 2, 3 and 4% w/w of WPI). Measurements of film microstructure, laser light-scattering granulometry, differential scanning calorimetry, wetti…