Peculiarities of coherent optical oscillation in Sn_2P_2S_6 crystals
We show analytically and numerically that the unusual photorefractive nonlinear response of Sn2P2S6 crystals leads to a variety of new features of coherent optical oscillation. In addition to the explanation of the known peculiarities, new features are predicted.
Strong lowering of the mirrorless optical oscillation threshold by angular mismatches for nonlocal photorefractive nonlinearity.
We show that the introduction of an angular mismatch for the pump waves results, in the case of nonlocal photorefractive nonlinearity, in a strong almost twofold decrease of the threshold value of the coupling strength for the mirrorless optical oscillation. This surprising feature will lead to a strong modification of the threshold and near-threshold behavior of a vast variety of optical oscillators based on the photorefractive phase conjugation and involving finite-size light beams.
Nonlinear pulse deceleration using photorefractive four-wave mixing
We investigate the possibilities of the backward four-wave coupling based on the nonlocal photorefractive response for the nonlinear deceleration of light pulses. The presence of an additional external variable parameter—the pump intensity ratio—allows to improve the output characteristics of the decelerated pulses compared to those typical of the two-wave coupling. In particular, large delay times of the output pulses can be achieved without their strong amplification. This positive distinctive feature of the pulse deceleration occurs far from threshold of the mirrorless optical oscillation.
Modeling of the photorefractive nonlinear response in Sn_2P_2S_6 crystals
We develop a theory of the photorefractive nonlinear response for Sn2P2S6 crystals. The theory incorporates two types of charge carrier (optically active and passive), provides explicit expressions for the characteristic buildup-relaxation rates and gain factors, explains naturally a big variety of accumulated experimental data, and facilitates characterization-optimization of this important nonlinear material.
Slowdown and speedup of light pulses using the self-compensating photorefractive response
We study theoretically the effects of pulse slowdown and speedup in ferroelectric Sn2P2S6 possessing a self-compensating photorefractive response. It is shown that both these effects can be implemented in one sample for sufficiently large values of the coupling strength. In contrast to other types of the photorefractive response (local and nonlocal), the output pulses do not suffer from strong spatial amplification and broadening.