0000000000214570

AUTHOR

Eero Saksman

0000-0002-7630-7135

showing 10 related works from this author

Rigidity of commutators and elementary operators on Calkin algebras

1998

LetA=(A 1,...,A n ),B=(B 1,...,B n )eL(l p ) n be arbitraryn-tuples of bounded linear operators on (l p ), with 1<p<∞. The paper establishes strong rigidity properties of the corresponding elementary operators e a,b on the Calkin algebraC(l p )≡L(l p )/K(l p ); $$\varepsilon _{\alpha ,b} (s) = \sum\limits_{i = 1}^n {a_i sb_i } $$ , where quotient elements are denoted bys=S+K(l p ) forSeL(l p ). It is shown among other results that the kernel Ker(e a,b ) is a non-separable subspace ofC(l p ) whenever e a,b fails to be one-one, while the quotient $$C(\ell ^p )/\overline {\operatorname{Im} \left( {\varepsilon _{\alpha ,b} } \right)} $$ is non-separable whenever e a,b fails to be onto. These re…

Pure mathematicsGeneral Mathematics010102 general mathematicsLinear operatorsHilbert spaceCompact operator01 natural sciencesCombinatoricssymbols.namesakeBounded function0103 physical sciencessymbols010307 mathematical physics0101 mathematicsQuotientMathematicsIsrael Journal of Mathematics
researchProduct

On compactness of the difference of composition operators

2004

Abstract Let φ and ψ be analytic self-maps of the unit disc, and denote by C φ and C ψ the induced composition operators. The compactness and weak compactness of the difference T = C φ − C ψ are studied on H p spaces of the unit disc and L p spaces of the unit circle. It is shown that the compactness of T on H p is independent of p ∈[1,∞). The compactness of T on L 1 and M (the space of complex measures) is characterized, and examples of φ and ψ are constructed such that T is compact on H 1 but non-compact on L 1 . Other given results deal with L ∞ , weakly compact counterparts of the previous results, and a conjecture of J.E. Shapiro.

Pure mathematicsConjectureComposition operatorApplied Mathematics010102 general mathematicsMathematical analysiseducationdifferenceComposition (combinatorics)Space (mathematics)01 natural sciences010101 applied mathematicsCompact spaceUnit circlecomposition operator111 Mathematicscompactness0101 mathematicsUnit (ring theory)Aleksandrov measureAnalysisMathematics
researchProduct

Boundary correspondence of Nevanlinna counting functions for self-maps of the unit disc

2003

Let ϕ \phi be a holomorphic self-map of the unit disc D \mathbb {D} . For every α ∈ ∂ D \alpha \in \partial \mathbb {D} , there is a measure τ α \tau _\alpha on ∂ D \partial \mathbb {D} (sometimes called Aleksandrov measure) defined by the Poisson representation Re ⁡ ( α + ϕ ( z ) ) / ( α − ϕ ( z ) ) = ∫ P ( z , ζ ) d τ α ( ζ ) \operatorname {Re}(\alpha +\phi (z))/(\alpha -\phi (z)) = \int P(z,\zeta ) \,d\tau _\alpha (\zeta ) . Its singular part σ α \sigma _\alpha measures in a natural way the “affinity” of ϕ \phi for the boundary value α \alpha . The affinity for values w w inside D \mathbb {D} is provided by the Nevanlinna counting function N ( w ) N(w) of ϕ \phi . We introduce a natural …

Pure mathematicsApplied MathematicsGeneral Mathematics010102 general mathematicsMathematical analysisHolomorphic functionMultiplicity (mathematics)Poisson distribution01 natural sciencesBoundary values010101 applied mathematicssymbols.namesakesymbolsAngular derivative0101 mathematicsMathematicsTransactions of the American Mathematical Society
researchProduct

Markov Chain Monte Carlo Methods for High Dimensional Inversion in Remote Sensing

2004

SummaryWe discuss the inversion of the gas profiles (ozone, NO3, NO2, aerosols and neutral density) in the upper atmosphere from the spectral occultation measurements. The data are produced by the ‘Global ozone monitoring of occultation of stars’ instrument on board the Envisat satellite that was launched in March 2002. The instrument measures the attenuation of light spectra at various horizontal paths from about 100 km down to 10–20 km. The new feature is that these data allow the inversion of the gas concentration height profiles. A short introduction is given to the present operational data management procedure with examples of the first real data inversion. Several solution options for…

Statistics and Probability010504 meteorology & atmospheric sciencesAttenuationInversion (meteorology)Markov chain Monte CarloDensity estimationInverse problem01 natural sciencesOccultation010104 statistics & probabilitysymbols.namesakeMetropolis–Hastings algorithmStatisticsPrior probabilitysymbols0101 mathematicsStatistics Probability and UncertaintyAlgorithm0105 earth and related environmental sciencesMathematicsJournal of the Royal Statistical Society Series B: Statistical Methodology
researchProduct

Bounded compositions on scaling invariant Besov spaces

2012

For $0 &lt; s &lt; 1 &lt; q &lt; \infty$, we characterize the homeomorphisms $��: \real^n \to \real^n$ for which the composition operator $f \mapsto f \circ ��$ is bounded on the homogeneous, scaling invariant Besov space $\dot{B}^s_{n/s,q}(\real^n)$, where the emphasis is on the case $q\not=n/s$, left open in the previous literature. We also establish an analogous result for Besov-type function spaces on a wide class of metric measure spaces as well, and make some new remarks considering the scaling invariant Triebel-Lizorkin spaces $\dot{F}^s_{n/s,q}(\real^n)$ with $0 &lt; s &lt; 1$ and $0 &lt; q \leq \infty$.

Mathematics::Functional AnalysisQuasiconformal mappingPure mathematics46E35 30C65 47B33Function spaceComposition operator010102 general mathematicsta11116. Peace & justiceTriebel–Lizorkin space01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional AnalysisMathematics - Classical Analysis and ODEsBounded function0103 physical sciencesClassical Analysis and ODEs (math.CA)FOS: MathematicsBesov space010307 mathematical physics0101 mathematicsInvariant (mathematics)ScalingAnalysisMathematicsJournal of Functional Analysis
researchProduct

On singular integral and martingale transforms

2007

Linear equivalences of norms of vector-valued singular integral operators and vector-valued martingale transforms are studied. In particular, it is shown that the UMD(p)-constant of a Banach space X equals the norm of the real (or the imaginary) part of the Beurling-Ahlfors singular integral operator, acting on the X-valued L^p-space on the plane. Moreover, replacing equality by a linear equivalence, this is found to be the typical property of even multipliers. A corresponding result for odd multipliers and the Hilbert transform is given.

46B09General Mathematics46B20 (Secondary)Banach space42B15 (Primary) 42B2001 natural sciencesUpper and lower bounds010104 statistics & probabilitysymbols.namesakeCorollary60G46; 42B15 (Primary) 42B20; 46B09; 46B20 (Secondary)Classical Analysis and ODEs (math.CA)FOS: Mathematics60G460101 mathematicsMathematicsNormed vector spaceDiscrete mathematicsApplied MathematicsProbability (math.PR)010102 general mathematicsSingular integralSingular valueMathematics - Classical Analysis and ODEssymbolsHilbert transformMartingale (probability theory)Mathematics - ProbabilityTransactions of the American Mathematical Society
researchProduct

Harnack's inequality for p-harmonic functions via stochastic games

2013

We give a proof of asymptotic Lipschitz continuity of p-harmonious functions, that are tug-of-war game analogies of ordinary p-harmonic functions. This result is used to obtain a new proof of Lipsc...

Pure mathematicsApplied Mathematics010102 general mathematicsMathematical analysista111Mathematics::Analysis of PDEs16. Peace & justiceLipschitz continuity01 natural sciences010101 applied mathematicsHarnack's principleHarmonic functionInfinity Laplacian0101 mathematicsEquivalence (measure theory)AnalysisHarnack's inequalityMathematicsCommunications in Partial Differential Equations
researchProduct

Componentwise adaptation for high dimensional MCMC

2005

We introduce a new adaptive MCMC algorithm, based on the traditional single component Metropolis-Hastings algorithm and on our earlier adaptive Metropolis algorithm (AM). In the new algorithm the adaption is performed component by component. The chain is no more Markovian, but it remains ergodic. The algorithm is demonstrated to work well in varying test cases up to 1000 dimensions.

Statistics and ProbabilityMathematical optimization010504 meteorology & atmospheric sciencesMonte Carlo methodMarkov processMarkov chain Monte Carlo01 natural sciencesStatistics::Computation010104 statistics & probabilityComputational Mathematicssymbols.namesakeMetropolis–Hastings algorithmTest caseChain (algebraic topology)Component (UML)symbolsStatistics::MethodologyErgodic theory0101 mathematicsStatistics Probability and Uncertainty0105 earth and related environmental sciencesMathematicsComputational Statistics
researchProduct

REGULARITY OF THE FRACTIONAL MAXIMAL FUNCTION

2003

The purpose of this work is to show that the fractional maximal operator has somewhat unexpected regularity properties. The main result shows that the fractional maximal operator maps -spaces boundedly into certain first-order Sobolev spaces. It is also proved that the fractional maximal operator preserves first-order Sobolev spaces. This extends known results for the Hardy–Littlewood maximal operator.

Sobolev spaceMathematics::Functional AnalysisPure mathematicsWork (thermodynamics)General MathematicsMathematical analysisMaximal operatorMaximal functionMathematicsBulletin of the London Mathematical Society
researchProduct

Pointwise characterizations of Hardy-Sobolev functions

2006

We establish simple pointwise characterizations of functions in the Hardy-Sobolev spaces within the range n/(n+1)<p <=1. In addition, classical Hardy inequalities are extended to the case p <= 1.

PointwiseMathematics::Functional Analysis42B30 (Primary) 26D15General Mathematics42B25 (Secondary)010102 general mathematicsMathematical analysisMathematics::Classical Analysis and ODEsMathematics::Analysis of PDEs01 natural sciencesFunctional Analysis (math.FA)Mathematics - Functional Analysis010101 applied mathematicsSobolev spaceCombinatoricsNull setType conditionMathematics - Classical Analysis and ODEsClassical Analysis and ODEs (math.CA)FOS: Mathematics46E35Locally integrable function0101 mathematics46E35; 42B30 (Primary) 26D15; 42B25 (Secondary)Mathematics
researchProduct