0000000000214570

AUTHOR

Eero Saksman

0000-0002-7630-7135

Rigidity of commutators and elementary operators on Calkin algebras

LetA=(A 1,...,A n ),B=(B 1,...,B n )eL(l p ) n be arbitraryn-tuples of bounded linear operators on (l p ), with 1<p<∞. The paper establishes strong rigidity properties of the corresponding elementary operators e a,b on the Calkin algebraC(l p )≡L(l p )/K(l p ); $$\varepsilon _{\alpha ,b} (s) = \sum\limits_{i = 1}^n {a_i sb_i } $$ , where quotient elements are denoted bys=S+K(l p ) forSeL(l p ). It is shown among other results that the kernel Ker(e a,b ) is a non-separable subspace ofC(l p ) whenever e a,b fails to be one-one, while the quotient $$C(\ell ^p )/\overline {\operatorname{Im} \left( {\varepsilon _{\alpha ,b} } \right)} $$ is non-separable whenever e a,b fails to be onto. These re…

research product

On compactness of the difference of composition operators

Abstract Let φ and ψ be analytic self-maps of the unit disc, and denote by C φ and C ψ the induced composition operators. The compactness and weak compactness of the difference T = C φ − C ψ are studied on H p spaces of the unit disc and L p spaces of the unit circle. It is shown that the compactness of T on H p is independent of p ∈[1,∞). The compactness of T on L 1 and M (the space of complex measures) is characterized, and examples of φ and ψ are constructed such that T is compact on H 1 but non-compact on L 1 . Other given results deal with L ∞ , weakly compact counterparts of the previous results, and a conjecture of J.E. Shapiro.

research product

Boundary correspondence of Nevanlinna counting functions for self-maps of the unit disc

Let ϕ \phi be a holomorphic self-map of the unit disc D \mathbb {D} . For every α ∈ ∂ D \alpha \in \partial \mathbb {D} , there is a measure τ α \tau _\alpha on ∂ D \partial \mathbb {D} (sometimes called Aleksandrov measure) defined by the Poisson representation Re ⁡ ( α + ϕ ( z ) ) / ( α − ϕ ( z ) ) = ∫ P ( z , ζ ) d τ α ( ζ ) \operatorname {Re}(\alpha +\phi (z))/(\alpha -\phi (z)) = \int P(z,\zeta ) \,d\tau _\alpha (\zeta ) . Its singular part σ α \sigma _\alpha measures in a natural way the “affinity” of ϕ \phi for the boundary value α \alpha . The affinity for values w w inside D \mathbb {D} is provided by the Nevanlinna counting function N ( w ) N(w) of ϕ \phi . We introduce a natural …

research product

Markov Chain Monte Carlo Methods for High Dimensional Inversion in Remote Sensing

SummaryWe discuss the inversion of the gas profiles (ozone, NO3, NO2, aerosols and neutral density) in the upper atmosphere from the spectral occultation measurements. The data are produced by the ‘Global ozone monitoring of occultation of stars’ instrument on board the Envisat satellite that was launched in March 2002. The instrument measures the attenuation of light spectra at various horizontal paths from about 100 km down to 10–20 km. The new feature is that these data allow the inversion of the gas concentration height profiles. A short introduction is given to the present operational data management procedure with examples of the first real data inversion. Several solution options for…

research product

Bounded compositions on scaling invariant Besov spaces

For $0 &lt; s &lt; 1 &lt; q &lt; \infty$, we characterize the homeomorphisms $��: \real^n \to \real^n$ for which the composition operator $f \mapsto f \circ ��$ is bounded on the homogeneous, scaling invariant Besov space $\dot{B}^s_{n/s,q}(\real^n)$, where the emphasis is on the case $q\not=n/s$, left open in the previous literature. We also establish an analogous result for Besov-type function spaces on a wide class of metric measure spaces as well, and make some new remarks considering the scaling invariant Triebel-Lizorkin spaces $\dot{F}^s_{n/s,q}(\real^n)$ with $0 &lt; s &lt; 1$ and $0 &lt; q \leq \infty$.

research product

On singular integral and martingale transforms

Linear equivalences of norms of vector-valued singular integral operators and vector-valued martingale transforms are studied. In particular, it is shown that the UMD(p)-constant of a Banach space X equals the norm of the real (or the imaginary) part of the Beurling-Ahlfors singular integral operator, acting on the X-valued L^p-space on the plane. Moreover, replacing equality by a linear equivalence, this is found to be the typical property of even multipliers. A corresponding result for odd multipliers and the Hilbert transform is given.

research product

Harnack's inequality for p-harmonic functions via stochastic games

We give a proof of asymptotic Lipschitz continuity of p-harmonious functions, that are tug-of-war game analogies of ordinary p-harmonic functions. This result is used to obtain a new proof of Lipsc...

research product

Componentwise adaptation for high dimensional MCMC

We introduce a new adaptive MCMC algorithm, based on the traditional single component Metropolis-Hastings algorithm and on our earlier adaptive Metropolis algorithm (AM). In the new algorithm the adaption is performed component by component. The chain is no more Markovian, but it remains ergodic. The algorithm is demonstrated to work well in varying test cases up to 1000 dimensions.

research product

REGULARITY OF THE FRACTIONAL MAXIMAL FUNCTION

The purpose of this work is to show that the fractional maximal operator has somewhat unexpected regularity properties. The main result shows that the fractional maximal operator maps -spaces boundedly into certain first-order Sobolev spaces. It is also proved that the fractional maximal operator preserves first-order Sobolev spaces. This extends known results for the Hardy–Littlewood maximal operator.

research product

Pointwise characterizations of Hardy-Sobolev functions

We establish simple pointwise characterizations of functions in the Hardy-Sobolev spaces within the range n/(n+1)<p <=1. In addition, classical Hardy inequalities are extended to the case p <= 1.

research product