0000000000214772

AUTHOR

Niklas Wester

Characterization and Electrochemical Properties of Oxygenated Amorphous Carbon (a-C) Films

Amorphous carbon (a-C) films with varying oxygen content were deposited by closed-field unbalanced magnetron sputtering with the aim to understand the effect of oxygen on the structural and physical properties of the films and subsequently correlate these changes with electrochemical properties. The a-C films were characterized by transmission electron microscopy, helium-ion microscopy, atomic force microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy and time-of-flight elastic recoil detection analysis. The electrochemical properties were studied by electrochemical impedance spectroscopy and cyclic voltammetry with several redox systems (Ru(NH3)62+/3+, Fe(CN)64−/3−, dopamine an…

research product

Room-Temperature Micropillar Growth of Lithium-Titanate-Carbon Composite Structures by Self-Biased Direct Current Magnetron Sputtering for Lithium Ion Microbatteries

Here, an unidentified type of micropillar growth is described at room temperature during conventional direct-current magnetron sputtering (DC-MS) deposition from a Li4Ti5O12+graphite sputter target under negative substrate bias and high operating pressure. These fabricated carbon-Li2O-TiO2 microstructures consisting of various Li4Ti5O12/Li2TiO3/LixTiO2 crystalline phases are demonstrated as an anode material in Li-ion microbatteries. The described micropillar fabrication method is a low-cost, substrate independent, single-step, room-temperature vacuum process utilizing a mature industrial complementary metal-oxide-semiconductor (CMOS)-compatible technology. Furthermore, tentative considerat…

research product

What Determines the Electrochemical Properties of Nitrogenated Amorphous Carbon Thin Films?

Funding Information: We acknowledge the provision of facilities by RawMatters Finland Infrastructure (RAMI, no. 292884), Aalto University Bioeconomy, and OtaNano - Nanomicroscopy Center (Aalto-NMC). Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. We acknowledge CSC – IT Center for Science, Finland, for computational resources. S.S. acknowledges funding from the Walter Ahlström Foundation. This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skł…

research product