0000000000214788
AUTHOR
M.a. Hernández
Dynamics of thermally induced optical nonlinearity in GaSe thin slabs
A study of the nonlinear effects shown by thin slabs of GaSe metaled with Au is presented.
Numerical analysis of thermally induced optical nonlinearity in GaSe layered crystal
A numerical approach to studying thermally induced optical nonlinearity in semiconductors is presented. A transient finite difference algorithm is applied to solve the thermal diffusion equation coupled with the nonlinear absorbance-transmittance of Au/GaSe/Au samples with an applied electric field. The presented analysis can deal with any arbitrary axisymmetric dependence of the input power over the sample and external electric field, and provides information about the steady state and transitory effects in the transmittance.
Faraday effect in standard optical fibers: dispersion of the effective Verdet constant
We have measured the Faraday effect in silica standard optical fibers in the wavelength range 458-1523 nm. An effective Verdet constant Vef that exhibits a linear dependence on the square of the optical frequency ν is defined: V(ef) = (0.142 ± 0.004) × 10(-28) ν(2) rad T(-1) m(-1). We demonstrate that the negative effects of a small linear birefringence can be minimized by adjustment of the input polarization to an optimum state.
Temperature dependence of refractive index and absorption coefficient of GaSe at 633 nm
Abstract Measurements of the ordinary refractive index and the absorption coefficient ( E /t] to c axis ) of gallium selenide at 633 nm, in the temperature range [20,100] °C, are reported. Useful analytical approximations obtained after a least squares fitting process are provided, as well. These results are basic for any theoretical model of nonlinear and bistable optical devices based on GaSe.