0000000000215088
AUTHOR
Froylán Ibarra-velarde
Predicting antitrichomonal activity: A computational screening using atom-based bilinear indices and experimental proofs
Existing Trichomonas vaginalis therapies are out of reach for most trichomoniasis people in developing countries and, where available, they are limited by their toxicity (mainly in pregnant women) and their cost. New antitrichomonal agents are needed to combat emerging metronidazole-resistant trichomoniasis and reduce the side effects associated with currently available drugs. Toward this end, atom-based bilinear indices, a new TOMOCOMD-CARDD molecular descriptor, and linear discriminant analysis (LDA) were used to discover novel, potent, and non-toxic lead trichomonacidal chemicals. Two discriminant functions were obtained with the use of non-stochastic and stochastic atom-type bilinear in…
Antiprotozoan lead discovery by aligning dry and wet screening: Prediction, synthesis, and biological assay of novel quinoxalinones
Protozoan parasites have been one of the most significant public health problems for centuries and several human infections caused by them have massive global impact. Most of the current drugs used to treat these illnesses have been used for decades and have many limitations such as the emergence of drug resistance, severe side-effects, low-to-medium drug efficacy, administration routes, cost, etc. These drugs have been largely neglected as models for drug development because they are majorly used in countries with limited resources and as a consequence with scarce marketing possibilities. Nowadays, there is a pressing need to identify and develop new drug-based antiprotozoan therapies. In …
New antitrichomonal drug-like chemicals selected by bond (edge)-based TOMOCOMD-CARDD descriptors.
Bond-based quadratic indices, new TOMOCOMD-CARDD molecular descriptors, and linear discriminant analysis (LDA) were used to discover novel lead trichomonacidals. The obtained LDA-based quantitative structure-activity relationships (QSAR) models, using nonstochastic and stochastic indices, were able to classify correctly 87.91% (87.50%) and 89.01% (84.38%) of the chemicals in training (test) sets, respectively. They showed large Matthews correlation coefficients of 0.75 (0.71) and 0.78 (0.65) for the training (test) sets, correspondingly. Later, both models were applied to the virtual screening of 21 chemicals to find new lead antitrichomonal agents. Predictions agreed with experimental resu…
Dry selection and wet evaluation for the rational discovery of new anthelmintics
Helminths infections remain a major problem in medical and public health. In this report, atom-based 2D bilinear indices, a TOMOCOMD-CARDD (QuBiLs-MAS module) molecular descriptor family and linear discriminant analysis (LDA) were used to find models that differentiate among anthelmintic and non-anthelmintic compounds. Two classification models obtained by using non-stochastic and stochastic 2D bilinear indices, classified correctly 86.64% and 84.66%, respectively, in the training set. Equation 1(2) correctly classified 141(135) out of 165 [85.45%(81.82%)] compounds in external validation set. Another LDA models were performed in order to get the most likely mechanism of action of anthelmin…
Discovery of novel trichomonacidals using LDA-driven QSAR models and bond-based bilinear indices as molecular descriptors
Few years ago, the World Health Organization estimated the number of adults with trichomoniasis at 170 million worldwide, more than the combined numbers for gonorrhea, syphilis, and chlamydia. To combat this sexually transmitted disease, Metronidazole (MTZ) has emerged, since 1959, as a powerful drug for the systematic treatment of infected patients. However, increasing resistance to MTZ, adverse effects associated to high-dose MTZ therapies and very expensive conventional technologies related to the development of new trichomonacidals necessitate novel computational methods that shorten the drug discovery pipeline. Therefore, bond-based bilinear indices, new 2-D bond-based TOMOCOMD-CARDD M…
Atom, atom-type and total molecular linear indices as a promising approach for bioorganic and medicinal chemistry: theoretical and experimental assessment of a novel method for virtual screening and rational design of new lead anthelmintic.
Abstract Helminth infections are a medical problem in the world nowadays. In this paper a novel atom-level chemical descriptor has been applied to estimate the anthelmintic activity. Total and local linear indices and linear discriminant analysis were used to obtain a quantitative model that discriminates between anthelmintic and non-anthelmintic drug-like compounds. The discriminant model has an accuracy of 90.11% in the training set, with a high Matthews’ correlation coefficient (MCC = 0.80). To assess the robustness and predictive power of the obtained model, internal (leave-n-out) and external validation process was performed. The QSAR model correctly classified 88.55% of compounds in t…