Fine properties of functions with bounded variation in Carnot-Carathéodory spaces
Abstract We study properties of functions with bounded variation in Carnot-Caratheodory spaces. We prove their almost everywhere approximate differentiability and we examine their approximate discontinuity set and the decomposition of their distributional derivatives. Under an additional assumption on the space, called property R , we show that almost all approximate discontinuities are of jump type and we study a representation formula for the jump part of the derivative.
Local minimizers and gamma-convergence for nonlocal perimeters in Carnot groups
We prove the local minimality of halfspaces in Carnot groups for a class of nonlocal functionals usually addressed as nonlocal perimeters. Moreover, in a class of Carnot groups in which the De Giorgi's rectifiability Theorem holds, we provide a lower bound for the $\Gamma$-liminf of the rescaled energy in terms of the horizontal perimeter.