0000000000215110

AUTHOR

Julia K. Bickmann

Identification and prevention of genotyping errors caused by G-quadruplex- and i-motif-like sequences.

Abstract Background: Reliable PCR amplification of DNA fragments is the prerequisite for most genetic assays. We investigated the impact of G-quadruplex– or i-motif–like sequences on the reliability of PCR-based genetic analyses. Methods: We found the sequence context of a common intronic polymorphism in the MEN1 gene (multiple endocrine neoplasia I) to be the cause of systematic genotyping errors by inducing preferential amplification of one allelic variant [allele dropout (ADO)]. Bioinformatic analyses and pyrosequencing-based allele quantification enabled the identification of the underlying DNA structures. Results: We showed that G-quadruplex– or i-motif–like sequences can reproducibly …

research product

A novel approach to CFTR mutation testing by pyrosequencing-based assay panels adapted to ethnicities.

Abstract Background: Cystic fibrosis (CF) is a common autosomal recessive genetic disorder caused by a variety of sequence alterations in the CFTR gene [cystic fibrosis transmembrane conductance regulator (ATP-binding cassette sub-family C, member 7)]. Because the relative prevalence of mutations strongly depends on the ethnic background, first-level testing of CF as defined by recent consensus recommendations ought to be adaptable to the ethnicity of patients. Methods: We therefore developed and implemented a diagnostic approach to first-level testing for CF based on published mutation frequencies and Pyrosequencing (PSQ) technology that we complemented with standard procedures of mutation…

research product