Effective kink-kink interaction in a one-dimensional model mediated by phonon exchange
The general 1D double-well model with anharmonic interaction is considered in the displacive limit. Expansion of the Hamiltonian around a multikink state results in a phonon-kink Hamiltonian. It is shown that at rather low temperatures and short wave lengths the phonon-kink interaction can be treated in Born approximation, leading to a decomposition of the multikink-phonon Hamiltionian. Elimination of the phonons results in an effective potential for the kink-kink interaction, which corresponds to the one-dimensional analog of the RKKY interaction. This long-range interaction is inherent only for models with anharmonic on-site potentials and not in case of a double-parabola model.