0000000000216837

AUTHOR

D. Protopopescu

Search for heavy neutrinos in \(\pi ^{ + } \to \mu ^{ + }\nu \) decay and status of lepton universality test in the PIENU experiment

International audience; In the present work of the PIENU experiment, heavy neutrinos were sought in pion decays \(\pi ^{ + } \to \mu ^{ + }\nu \). No evidence for extra peak was found in the muon kinetic energy spectrum and 90% confidence level upper limits were set on the neutrino mixing matrix \(|U_{\mu i}|^{2}\) in the mass range of 15.7 to 33.8 MeV/c^2, improving an order of magnitude over previous experiments. Current status of lepton universality test is also reported.

research product

Precise Measurement of the Neutron Magnetic Form FactorGMnin the Few-GeV2Region

The neutron elastic magnetic form factor was extracted from quasielastic electron scattering on deuterium over the range Q;{2}=1.0-4.8 GeV2 with the CLAS detector at Jefferson Lab. High precision was achieved with a ratio technique and a simultaneous in situ calibration of the neutron detection efficiency. Neutrons were detected with electromagnetic calorimeters and time-of-flight scintillators at two beam energies. The dipole parametrization gives a good description of the data.

research product

Improved search for two body muon decay μ+→e+XH

Charged lepton flavor violating muon decay ${\ensuremath{\mu}}^{+}\ensuremath{\rightarrow}{e}^{+}{X}_{H}$, where ${X}_{H}$ is a massive neutral boson, was sought by searching for extra peaks in the muon decay ${\ensuremath{\mu}}^{+}\ensuremath{\rightarrow}{e}^{+}\ensuremath{\nu}\overline{\ensuremath{\nu}}$ energy spectrum in the ${m}_{{X}_{H}}$ mass region $47.8--95.1\text{ }\text{ }\mathrm{MeV}/{c}^{2}$. No signal was found and 90% confidence level upper limits were set on the branching ratio $\mathrm{\ensuremath{\Gamma}}({\ensuremath{\mu}}^{+}\ensuremath{\rightarrow}{e}^{+}{X}_{H})/\mathrm{\ensuremath{\Gamma}}({\ensuremath{\mu}}^{+}\ensuremath{\rightarrow}{e}^{+}\ensuremath{\nu}\overline{…

research product

Search for heavy neutrinos at the NA48/2 and NA62 experiments at CERN

© The Authors, published by EDP Sciences. The NA48/2 experiment at CERN has collected large samples of charged kaons decaying into a pion and two muons for the search of heavy nuetrinos. In addition, its successor NA62 has set new limits on the rate of charged kaon decay into a heavy neutral lepton (HNL) and a lepton, with = e, µ, using the data collected in 2007 and 2015. New limits on heavy neutrinos from kaon decays into pions, muons and positrons are presented in this report.

research product

Searches for lepton number violating $K^+$ decays

The NA62 experiment at CERN reports a search for the lepton number violating decays K+ -> pi(-)e(+)e(+) and K+ -> pi(-)mu(+)mu(+) using a data sample collected in 2017. No signals are observed, and upper limits on the branching fractions of these decays of 2.2 x 10(-10) and 4.2 x 10(-11) are obtained, respectively, at 90% confidence level. These upper limits improve on previously reported measurements by factors of 3 and 2, respectively.

research product

Search for heavy neutrinos in → Decay

In the present work of the PIENU experiment, heavy neutrinos were sought in pion decays π+→μ+ν at rest by examining the observed muon energy spectrum for extra peaks in addition to the expected peak for a light neutrino. No evidence for heavy neutrinos was observed. Upper limits were set on the neutrino mixing matrix |Uμi|2 in the neutrino mass region of 15.7–33.8 MeV/c$^{2}$, improving on previous results by an order of magnitude.

research product

Search for heavy neutral lepton production in K+ decays to positrons

A search for heavy neutral lepton ($N$) production in $K^+\to e^+N$ decays using the data sample collected by the NA62 experiment at CERN in 2017--2018 is reported. Upper limits of the extended neutrino mixing matrix element $|U_{e4}|^2$ are established at the level of $10^{-9}$ over most of the accessible heavy neutral lepton mass range 144--462 MeV/$c^2$, with the assumption that the lifetime exceeds 50 ns. These limits improve significantly upon those of previous production and decay searches. The $|U_{e4}|^2$ range favoured by Big Bang Nucleosynthesis is excluded up to a mass of about 340 MeV/$c^2$.

research product

Improved search for heavy neutrinos in the decay π→eν

A search for massive neutrinos has been made in the decay π+→e+ν. No evidence was found for extra peaks in the positron energy spectrum indicative of pion decays involving massive neutrinos (π→e+νh). Upper limits (90% C.L.) on the neutrino mixing matrix element |Uei|2 in the neutrino mass region 60–135 MeV/c2 were set and are an order of magnitude improvement over previous results.

research product

Search for K+→ π+νν¯ at NA62

Flavour physics is one of the most powerful fields for the search of new physics beyond the Standard Model. The kaon sector with the rare decay K+ → π+νν̅ provides one of the cleanest and most promising channels. NA62, a fixed target experiment at the CERN SPS, aims to measure BR (K+ → π+νν̅) with 10% precision to test the Standard Model validity up to an energy scale of hundreds of TeV. NA62 had dedicated data taking for the K+ → π+νν̅ measurement in 2016 and 2017 and will continue in 2018. Here preliminary results on a fraction of 2016 dataset are presented. The analysis of the complete 2016 data sample is expected to achieve the SM sensitivity.

research product

Search for three body pion decays π+→l+νX

The three body pion decays π+→l+νX(l=e,μ), where X is a weakly interacting neutral boson, were searched for using the full data set from the PIENU experiment. An improved limit on Γ(π+→e+νX)/Γ(π+→μ+νμ) in the mass range 0<mX<120 MeV/c2 and a first result for Γ(π+→μ+νX)/Γ(π+→μ+νμ) in the region 0<mX<33.9 MeV/c2 were obtained. The Majoron-neutrino coupling model was also constrained using the current experimental result of the π+→e+νe(γ) branching ratio.

research product

Improved search for heavy neutrinos in the decay π→eν

A search for massive neutrinos has been made in the decay π+→e+ν. No evidence was found for extra peaks in the positron energy spectrum indicative of pion decays involving massive neutrinos (π→e+νh). Upper limits (90% C.L.) on the neutrino mixing matrix element |Uei|2 in the neutrino mass region 60–135 MeV/c2 were set and are an order of magnitude improvement over previous results.

research product

NA48/62 latest results

The NA62 experiment at the CERN SPS recorded in 2007 a large sample of K+ ? µ+?µ decays. A peak search in the missing mass spectrum of this decay is performed. In the absence of observed signal, the limits obtained on B(K+ ? µ+?h) and on the mixing matrix element |Uµ 4| are reported. The upgraded NA62 experiment started data taking in 2015. About 5×1011K+ decays have been recorded so far to measure the branching ratio of the K+ ? ?+?? decay. Preliminary results from the K+ ? ?+?? analysis based on about 5% of the 2016 statistics are reported.

research product

Beam-Helicity Asymmetries in Double-Charged-Pion Photoproduction on the Proton

Beam-helicity asymmetries for the two-pion-photoproduction reaction gamma + p --> p pi+ pi- have been studied for the first time in the resonance region for center-of-mass energies between 1.35 GeV and 2.30 GeV. The experiment was performed at Jefferson Lab with the CEBAF Large Acceptance Spectrometer using circularly polarized tagged photons incident on an unpolarized hydrogen target. Beam-helicity-dependent angular distributions of the final-state particles were measured. The large cross-section asymmetries exhibit strong sensitivity to the kinematics and dynamics of the reaction. The data are compared with the results of various phenomenological model calculations, and show that these…

research product

Search for heavy neutral lepton production in K+ decays

A search for heavy neutral lepton production in $K^+$ decays using a data sample collected with a minimum bias trigger by the NA62 experiment at CERN in 2015 is reported. Upper limits at the $10^{-7}$ to $10^{-6}$ level are established on the elements of the extended neutrino mixing matrix $|U_{\ell 4}|^2$ ($\ell=e,\mu$) for heavy neutral lepton mass in the range $170-448~{\rm MeV}/c^2$. This improves on the results from previous production searches in $K^+$ decays, setting more stringent limits and extending the mass range.

research product

Helicity dependence of the total inclusive cross section on the deuteron

Abstract A measurement of the helicity dependence of the total inclusive photoabsorption cross section on the deuteron was carried out at MAMI (Mainz) in the energy range 200 E γ 800 MeV . The experiment used a 4 π detection system, a circularly polarized tagged photon beam and a frozen spin target which provided longitudinally polarized deuterons. These new results are a significant improvement on the existing data and allow a detailed comparison with state-of-the-art calculations.

research product

Search for Lepton Number and Flavor Violation in K+ and π0 Decays

Searches for the lepton number violating $K^{+} \rightarrow \pi^{-} \mu^{+} e^{+}$ decay and the lepton flavour violating $K^{+} \rightarrow \pi^{+} \mu^{-} e^{+}$ and $\pi^{0} \rightarrow \mu^{-} e^{+}$ decays are reported using data collected by the NA62 experiment at CERN in $2017$-$2018$. No evidence for these decays is found and upper limits of the branching ratios are obtained at 90% confidence level: $\mathcal{B}(K^{+}\rightarrow\pi^{-}\mu^{+}e^{+})<4.2\times 10^{-11}$, $\mathcal{B}(K^{+}\rightarrow\pi^{+}\mu^{-}e^{+})<6.6\times10^{-11}$ and $\mathcal{B}(\pi^{0}\rightarrow\mu^{-}e^{+})<3.2\times 10^{-10}$. These results improve by one order of magnitude over previous results for thes…

research product

Initial results from the PIENU experiment

The pion branching ratio, $R_{\pi } = \frac { {\Gamma }(\pi ^{+} \rightarrow e^{+} \nu _{e} + \pi ^{+}\rightarrow e^{+} \nu _{e} \gamma )}{\Gamma (\pi ^{+} \rightarrow \mu ^{+} \nu _{\mu } + \pi ^{+} \rightarrow \mu ^{+} \nu _{\mu } \gamma )}$ , provides a sensitive test of lepton universality and constraints on many new physics scenarios. The theoretical uncertainty on the Standard Model prediction of R π is 0.02 %, a factor of twenty smaller than the experimental uncertainty. The analysis of a subset of data taken by the PIENU experiment will be presented. The result, R π = (1.2344 ± 0.0023(s t a t) ± 0.0019(s y s t)) ⋅ 10−4 [1], is consistent with the Standard Model prediction and repres…

research product