Caustics for spherical waves
We study the development of caustics in shift-symmetric scalar field theories by focusing on simple waves with an $SO(p)$-symmetry in an arbitrary number of space dimensions. We show that the pure Galileon, the DBI-Galileon, and the extreme-relativistic Galileon naturally emerge as the unique set of caustic-free theories, highlighting a link between the caustic-free condition for simple $SO(p)$-waves and the existence of either a global Galilean symmetry or a global (extreme-)relativistic Galilean symmetry.
New horizons for fundamental physics with LISA
K. G. Arun et al.