0000000000216916

AUTHOR

Sophie Péru

showing 2 related works from this author

Shape coexistence in neutron-deficient Hg188 investigated via lifetime measurements

2020

Background: Shape coexistence in the Z≈82 region has been established in mercury, lead, and polonium isotopes. For even-even mercury isotopes with 100≤N≤106 multiple fingerprints of this phenomenon are observed, which seems to be no longer present for N≥110. According to a number of theoretical calculations, shape coexistence is predicted in the Hg188 isotope. Purpose: The aim of this work was to measure lifetimes of excited states in Hg188 to infer their collective properties, such as the deformation. Extending the investigation to higher-spin states, which are expected to be less affected by band-mixing effects, can provide additional information on the coexisting structures. Methods: The…

PhysicsSpectrometerIsotope010308 nuclear & particles physicsNuclear structurechemistry.chemical_element01 natural sciences7. Clean energyMolecular physicssymbols.namesakemedicine.anatomical_structurechemistryExcited state0103 physical sciencesmedicinesymbolsNeutron010306 general physicsHamiltonian (quantum mechanics)NucleusPolonium
researchProduct

$^{78}$Ni revealed as a doubly magic stronghold against nuclear deformation

2019

Nuclear magic numbers, which emerge from the strong nuclear force based on quantum chromodynamics, correspond to fully occupied energy shells of protons, or neutrons inside atomic nuclei. Doubly magic nuclei, with magic numbers for both protons and neutrons, are spherical and extremely rare across the nuclear landscape. While the sequence of magic numbers is well established for stable nuclei, evidence reveals modifications for nuclei with a large proton-to-neutron asymmetry. Here, we provide the first spectroscopic study of the doubly magic nucleus $^{78}$Ni, fourteen neutrons beyond the last stable nickel isotope. We provide direct evidence for its doubly magic nature, which is also predi…

1000ProtonNuclear Theorymedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaStrong interactionNuclear TheoryFOS: Physical sciences01 natural sciencesAsymmetryNuclear Theory (nucl-th)Magic number (programming)0103 physical sciencesEffective field theoryPhysics::Atomic and Molecular ClustersNeutronNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentNuclear Experimentmedia_commonPhysics[PHYS]Physics [physics]Multidisciplinary010308 nuclear & particles physicsMagic (programming)Atomic nucleusAtomic physics
researchProduct