0000000000217000

AUTHOR

Gustaf Olsson

showing 3 related works from this author

Minimizing membrane bioreactor environmental footprint by multiple objective optimization.

2020

This paper presents a modelling study aimed at minimizing the environmental foot print of a membrane bioreactor (MBR) for wastewater treatment. Specifically, an integrated model for MBR was employed in view of the management optimization of an MBR biological nutrient removal (BNR) pilot plant in terms of operational costs and direct greenhouse gases emissions. The influence of the operational parameters (OPs) on performance indicators (PIs) was investigated by adopting the Extended-FAST sensitivity analysis method. Further, a multi-objective analysis was performed by applying the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS). The results show-up that the sludge …

Membrane fouling0106 biological sciencesEnvironmental EngineeringWastewater treatment plantMathematical modelling optimizationBioengineeringWastewater010501 environmental sciencesMembrane bioreactor01 natural sciencesWaste Disposal FluidGreenhouse GasesBioreactors010608 biotechnologyWaste WaterProcess engineeringWaste Management and Disposal0105 earth and related environmental sciencesSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleSewageRenewable Energy Sustainability and the Environmentbusiness.industryMembrane foulingTOPSISMembranes ArtificialGeneral MedicineIdeal solutionPilot plantGreenhouse gasMulti-objective analysisEnvironmental scienceSewage treatmentPerformance indicatorbusinessBiotechnology
researchProduct

Greenhouse gas emissions and the links to plant performance in a fixed-film activated sludge membrane bioreactor - Pilot plant experimental evidence

2017

The present study explores the interlinkages among the operational variables of a University of Cape Town (UCT) Integrated Fixed Film Activated Sludge (IFAS) membrane bioreactor (MBR) pilot plant. Specifically, dedicated experimental tests were carried out with the final aim to find-out a constitutive relationship among operational costs (OCs), effluent quality index (EQI), effluent fines (EF). Greenhouse gas (GHG) emissions were also included in the study. Results showed that the EQI increases at low flow rate likely due to the dissolved oxygen (DO) limitation in the biological processes. Direct GHGs increase with the increasing of the air flow due to the anoxic N2O contribution. Irreversi…

Environmental Engineering0208 environmental biotechnologyMoving bed biofilm reactorBioengineeringWastewater treatment02 engineering and technology010501 environmental sciencesMembrane bioreactorWaste Disposal Fluid01 natural sciencesGreenhouse gas emissionBioreactorsGreenhouse gas emission; Membrane bioreactor; Moving bed biofilm reactor; Wastewater treatment; Bioengineering; Environmental Engineering; Mathematical modellingBioreactorWaste Management and DisposalEffluent0105 earth and related environmental sciencesSewageMathematical modellingSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleRenewable Energy Sustainability and the EnvironmentMoving bed biofilm reactorMembrane foulingEnvironmental engineeringGeneral Medicine020801 environmental engineeringOxygenPilot plantActivated sludgeMembrane bioreactorEnvironmental scienceSewage treatment
researchProduct

Greenhouse gases from wastewater treatment — A review of modelling tools

2016

Nitrous oxide, carbon dioxide and methane are greenhouse gases (GHG) emitted from wastewater treatment that contribute to its carbon footprint. As a result of the increasing awareness of GHG emissions from wastewater treatment plants (WWTPs), new modelling, design, and operational tools have been developed to address and reduce GHG emissions at the plant-wide scale and beyond. This paper reviews the state-of-the-art and the recently developed tools used to understand and manage GHG emissions from WWTPs, and discusses open problems and research gaps. The literature review reveals that knowledge on the processes related to N2O formation, especially due to autotrophic biomass, is still incompl…

Greenhouse EffectEnvironmental Engineering0208 environmental biotechnologyAir pollutionBiomassChemicalCarbon footprint; Denitrification; Emission; Greenhouse gas; Methane; Nitrification; Nitrous oxide; Wastewater; Environmental Chemistry; Pollution; Waste Management and Disposal; Environmental Engineering02 engineering and technologyWastewater010501 environmental sciencesmedicine.disease_causeWaste Disposal FluidGreenhouse gas01 natural sciencesGreenhouse gaEmissionModelsAir PollutionEnvironmental monitoringmedicineCarbon footprint; Denitrification; Emission; Greenhouse gas; Methane; Nitrification; Nitrous oxide; Wastewater; Air Pollutants; Air Pollution; Carbon Dioxide; Environmental Monitoring; Greenhouse Effect; Methane; Nitrous Oxide; Waste Disposal Fluid; Waste Water; Models ChemicalEnvironmental ChemistryWaste WaterGreenhouse effectWaste Management and Disposal0105 earth and related environmental sciencesAir PollutantsNitrous oxideSettore ICAR/03 - Ingegneria Sanitaria-AmbientaleScale (chemistry)Waste DisposalEnvironmental engineeringCarbon DioxideEnvironmental economicsCarbon footprintNitrificationPollution020801 environmental engineeringModels ChemicalAir PollutantGreenhouse gasDenitrificationCarbon footprintEnvironmental scienceSewage treatmentFluidMethaneModelEnvironmental MonitoringScience of The Total Environment
researchProduct