0000000000217355

AUTHOR

Anthony Yezzi 3

showing 2 related works from this author

Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging

2021

Magnetic Resonance Imaging-based prostate segmentation is an essential task for adaptive radiotherapy and for radiomics studies whose purpose is to identify associations between imaging features and patient outcomes. Because manual delineation is a time-consuming task, we present three deep-learning (DL) approaches, namely UNet, efficient neural network (ENet), and efficient residual factorized convNet (ERFNet), whose aim is to tackle the fully-automated, real-time, and 3D delineation process of the prostate gland on T2-weighted MRI. While UNet is used in many biomedical image delineation applications, ENet and ERFNet are mainly applied in self-driving cars to compensate for limited hardwar…

Computer scienceGraphics processing unit02 engineering and technologyResiduallcsh:TechnologyArticle030218 nuclear medicine & medical imaginglcsh:Chemistrydeep learning; segmentation; prostate; MRI; ENet; UNet; ERFNet; radiomicsSet (abstract data type)03 medical and health sciences0302 clinical medicineENetERFNet0202 electrical engineering electronic engineering information engineeringGeneral Materials ScienceSegmentationlcsh:QH301-705.5InstrumentationSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniFluid Flow and Transfer ProcessesprostateArtificial neural networklcsh:Tbusiness.industryProcess Chemistry and TechnologyDeep learningsegmentationGeneral EngineeringProcess (computing)deep learningUNetPattern recognitionlcsh:QC1-999Computer Science Applicationslcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040radiomics020201 artificial intelligence & image processingArtificial intelligenceCentral processing unitlcsh:Engineering (General). Civil engineering (General)businesslcsh:PhysicsMRIApplied Sciences
researchProduct

A smart and operator independent system to delineate tumours in Positron Emission Tomography scans

2018

Abstract Positron Emission Tomography (PET) imaging has an enormous potential to improve radiation therapy treatment planning offering complementary functional information with respect to other anatomical imaging approaches. The aim of this study is to develop an operator independent, reliable, and clinically feasible system for biological tumour volume delineation from PET images. Under this design hypothesis, we combine several known approaches in an original way to deploy a system with a high level of automation. The proposed system automatically identifies the optimal region of interest around the tumour and performs a slice-by-slice marching local active contour segmentation. It automa…

Lung NeoplasmsComputer sciencemedicine.medical_treatmentPET imagingPattern Recognition Automated030218 nuclear medicine & medical imaging0302 clinical medicineNeoplasmsImage Processing Computer-AssistedSegmentationDiagnosis Computer-AssistedNeoplasm MetastasisRadiation treatment planningSettore ING-INF/05 - Sistemi Di Elaborazione Delle InformazioniObserver VariationActive contour modelmedicine.diagnostic_testBrain NeoplasmsPhantoms ImagingComputer Science ApplicationsHead and Neck NeoplasmsPositron emission tomography030220 oncology & carcinogenesis18F-fluoro-2-deoxy-d-glucoseAlgorithms18F-fluoro-2-deoxy-d-glucose and 11C-labeled methionine PET imagingSimilarity (geometry)Health InformaticsSensitivity and SpecificityNOActive contour algorithm03 medical and health sciencesFluorodeoxyglucose F18Predictive Value of TestsRegion of interestmedicineHumansFalse Positive ReactionsRetrospective Studies18F-fluoro-2-deoxy-d-glucose 11C-labeled methionine PET imaging Active contour algorithm Biological target volume Cancer segmentationbusiness.industryRadiotherapy Planning Computer-Assisted11C-labeled methionineReproducibility of ResultsPattern recognitionGold standard (test)Cancer segmentationRadiation therapyBiological target volumePositron-Emission TomographyArtificial intelligenceTomography X-Ray ComputedbusinessSoftwareComputers in Biology and Medicine
researchProduct