0000000000217355

AUTHOR

Anthony Yezzi 3

Deep Learning-Based Methods for Prostate Segmentation in Magnetic Resonance Imaging

Magnetic Resonance Imaging-based prostate segmentation is an essential task for adaptive radiotherapy and for radiomics studies whose purpose is to identify associations between imaging features and patient outcomes. Because manual delineation is a time-consuming task, we present three deep-learning (DL) approaches, namely UNet, efficient neural network (ENet), and efficient residual factorized convNet (ERFNet), whose aim is to tackle the fully-automated, real-time, and 3D delineation process of the prostate gland on T2-weighted MRI. While UNet is used in many biomedical image delineation applications, ENet and ERFNet are mainly applied in self-driving cars to compensate for limited hardwar…

research product

A smart and operator independent system to delineate tumours in Positron Emission Tomography scans

Abstract Positron Emission Tomography (PET) imaging has an enormous potential to improve radiation therapy treatment planning offering complementary functional information with respect to other anatomical imaging approaches. The aim of this study is to develop an operator independent, reliable, and clinically feasible system for biological tumour volume delineation from PET images. Under this design hypothesis, we combine several known approaches in an original way to deploy a system with a high level of automation. The proposed system automatically identifies the optimal region of interest around the tumour and performs a slice-by-slice marching local active contour segmentation. It automa…

research product