0000000000217379

AUTHOR

Fabio Bernardoni

showing 7 related works from this author

Probing the chiral regime of Nf=2 QCD with mixed actions

2011

17 páginas, 15 figuras, 9 tablas.-- El Pdf es la versión pre-print del artículo: arXiv:1008.1870v2

QuarkQuantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsChiral perturbation theory010308 nuclear & particles physicsOperator (physics)High Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Nuclear TheoryHigh Energy Physics::PhenomenologyLattice (group)FísicaFOS: Physical sciencesParticle Physics - LatticeFermion01 natural sciencesStrange matterHigh Energy Physics - LatticeLattice gauge theory0103 physical sciencesddc:530High Energy Physics::Experiment010306 general physics
researchProduct

Decay constants of B-mesons from non-perturbative HQET with two light dynamical quarks

2014

We present a computation of B-meson decay constants from lattice QCD simulations within the framework of Heavy Quark Effective Theory for the b-quark. The next-to-leading order corrections in the HQET expansion are included non-perturbatively. Based on Nf=2 gauge field ensembles, covering three lattice spacings a (0.08-0.05)fm and pion masses down to 190MeV, a variational method for extracting hadronic matrix elements is used to keep systematic errors under control. In addition we perform a careful autocorrelation analysis in the extrapolation to the continuum and to the physical pion mass limits. Our final results read fB=186(13)MeV, fBs=224(14)MeV and fBs/fB=1.203(65). A comparison with o…

QuarkParticle physicsNuclear and High Energy PhysicsHigh Energy Physics::LatticeHadronLattice field theoryNuclear Theoryhep-latFOS: Physical sciencesLattice QCD01 natural sciencesNuclear physicsRenormalizationPionHigh Energy Physics - LatticeHigh Energy Physics - Phenomenology (hep-ph)0103 physical sciencesMeson decayB mesonddc:530010306 general physicsNuclear ExperimentQuantum chromodynamicsPhysicsHeavy Quark Effective Theory010308 nuclear & particles physics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]High Energy Physics - Lattice (hep-lat)High Energy Physics::Phenomenologyhep-phLattice QCDHigh Energy Physics - PhenomenologyBottom quarks[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment
researchProduct

The b-quark mass from non-perturbative Nf=2 Heavy Quark Effective Theory at O(1/mh)

2014

Abstract We report our final estimate of the b-quark mass from N f = 2 lattice QCD simulations using Heavy Quark Effective Theory non-perturbatively matched to QCD at O ( 1 / m h ) . Treating systematic and statistical errors in a conservative manner, we obtain m ¯ b MS ¯ ( 2 GeV ) = 4.88 ( 15 ) GeV after an extrapolation to the physical point.

Quantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsConservation lawHigh Energy Physics::LatticeHigh Energy Physics::PhenomenologyLattice field theoryExtrapolationLattice QCDBottom quarkNuclear physicsHeavy quark effective theoryHigh Energy Physics::ExperimentNon-perturbativePhysics Letters B
researchProduct

Finite Volume Scaling of Pseudo Nambu-Goldstone Bosons in QCD

2008

We consider chiral perturbation theory in a finite volume and in a mixed regime of quark masses. We take N_l light quarks near the chiral limit, in the so-called epsilon-regime, while the remaining N_h quarks are heavier and in the standard p-regime. We compute in this new mixed regime the finite-size scaling of the light meson correlators in the scalar, pseudoscalar, vector and axial vector channels.Using the replica method, we easily extend our results to the partially quenched theory. With the help of our results, lattice QCD simulations with 2+1 flavors can safely investigate pion physics with very light up and down quark masses even in the region where the pion's correlation length ove…

QuarkQuantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsChiral perturbation theoryHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Nuclear TheoryHigh Energy Physics::PhenomenologyFísicaFOS: Physical sciencesDown quarkLattice QCDPseudoscalarPionHigh Energy Physics - LatticeGoldstone bosonHigh Energy Physics::Experiment
researchProduct

Mapping the geometry of the F(4) group.

2007

In this paper we present a construction of the compact form of the exceptional Lie group F4 by exponentiating the corresponding Lie algebra f4. We realize F4 as the automorphisms group of the exceptional Jordan algebra, whose elements are 3 x 3 hermitian matrices with octonionic entries. We use a parametrization which generalizes the Euler angles for SU(2) and is based on the fibration of F4 via a Spin(9) subgroup as a fiber. This technique allows us to determine an explicit expression for the Haar invariant measure on the F4 group manifold. Apart from shedding light on the structure of F4 and its coset manifold OP2=F4/Spin(9), the octonionic projective plane, these results are a prerequisi…

High Energy Physics - TheoryJordan algebraGroup (mathematics)General MathematicsGeneral Physics and AstronomyLie groupFOS: Physical sciencesGeometryMathematical Physics (math-ph)AutomorphismHigh Energy Physics - Theory (hep-th)22E70Lie algebraCoset22E46Projective planeSpecial unitary groupMathematical PhysicsMathematics22E46; 22E70
researchProduct

B-physics from non-perturbatively renormalized HQET in two-flavour lattice QCD.

2012

We report on the ALPHA Collaboration's lattice B-physics programme based on N_f=2 O(a) improved Wilson fermions and HQET, including all NLO effects in the inverse heavy quark mass, as well as non-perturbative renormalization and matching, to fix the parameters of the effective theory. Our simulations in large physical volume cover 3 lattice spacings a ~ (0.08-0.05) fm and pion masses down to 190 MeV to control continuum and chiral extrapolations. We present the status of results for the b-quark mass and the B_(s)-meson decay constants, f_B and f_{B_s}.

QuarkNuclear and High Energy PhysicsParticle physicsMesonHigh Energy Physics::LatticeFOS: Physical sciences01 natural sciencesRenormalizationHigh Energy Physics - Phenomenology (hep-ph)High Energy Physics - LatticePionLattice (order)0103 physical sciencesEffective field theoryNuclear Experiment010306 general physicsPhysics[PHYS.HLAT]Physics [physics]/High Energy Physics - Lattice [hep-lat]010308 nuclear & particles physicsHigh Energy Physics - Lattice (hep-lat)High Energy Physics::PhenomenologyParticle Physics - LatticeFermionLattice QCDAtomic and Molecular Physics and OpticsHigh Energy Physics - Phenomenology[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::Experiment
researchProduct

Heavy-light mesons in the epsilon-regime

2009

We study the finite-size scaling of heavy-light mesons in the static limit. We compute two-point functions of chiral current densities as well as pseudoscalar densities in the epsilon-regime of heavy meson Chiral Perturbation Theory (HMChPT). As expected, finite volume dependence turns out to be significant in this regime and can be predicted in the effective theory in terms of the infinite-volume low-energy couplings. These results might be relevant for extraction of heavy-meson properties from lattice simulations.

High Energy Physics - LatticeHigh Energy Physics::LatticeHigh Energy Physics - Lattice (hep-lat)Nuclear TheoryHigh Energy Physics::PhenomenologyFOS: Physical sciencesFísicaParticle Physics - LatticeNuclear Experiment
researchProduct