0000000000217478

AUTHOR

Gábor Pálinkás

A Molecular Dynamics Study of the Structure of an Aqueous KC1 Solution

A molecular dynamics simulation of a 2.2 molal aqueous KCl solution has been performed using the ST2 water model. The simulation extended over 5ps at an average temperature of 288 K. The basic box has a side length of 18.74 A and contained 200 water molecules, 8 cations and 8 anions. The structure of the solution is discussed by radial distribution functions, the orientation of the water molecules, and their geometrical arrangement in the first hydration shells. The first shells of K+ and Cl- extend up to 3.52 and 3.84 A, respectively, with the corresponding hydration numbers 7.8 and 7.6. The results are compared with recent neutron and X-ray diffraction data and with findings of previous M…

research product

Structure and Dynamics of NaCl in Methanol. A Molecular Dynamics Study

Abstract A recently developed flexible three-site model for methanol was employed to perform a Molecular Dynamics simulation of a 0.6 molal NaCl solution. The ion-methanol and ion-ion potential functions were derived from ab initio calculations. The structural properties of the solution are discussed on the basis of radial and angular distribution functions, the orientation of the methanol molecules, and their geometrical arrangement in the solvation shells of the ions. The dynamical properties of the solution - like self-diffusion coefficients, hindered translations, librations, and internal vibrations of the methanol molecules - are calculated from various autocorrelation functions.

research product