0000000000217527

AUTHOR

Mikhail Korzhik

showing 3 related works from this author

Excitation Transfer Engineering in Ce-Doped Oxide Crystalline Scintillators by Codoping with Alkali-Earth Ions

2018

This work has been supported by the European Social Fund Measure No. 09.3.3-LMT-K-712 activity Improvement of Researchers Qualification by Implementing the World-Class R&D Projects, and by grant #14.W03.31.0004 of the Russian Federation Government. Authors are grateful to CERN Crystal Clear Collaboration and COST Action TD1401 "Fast Advanced Scintillator Timing (FAST)" for support of collaboration.

multicomponent garnetsMaterials scienceInorganic chemistryexcitation transferscintillators02 engineering and technologyScintillator7. Clean energy01 natural sciencesDoped oxideIonfree carrier0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]Materials ChemistryElectrical and Electronic EngineeringAlkaline earth metal010308 nuclear & particles physicsmulticomponent garnetfree carriersSurfaces and Interfaces021001 nanoscience & nanotechnologyCondensed Matter PhysicsFree carrierSurfaces Coatings and FilmsElectronic Optical and Magnetic Materialsscintillator0210 nano-technologyExcitationphysica status solidi (a)
researchProduct

Nanoengineered Gd3Al2Ga3O12 Scintillation Materials with Disordered Garnet Structure for Novel Detectors of Ionizing Radiation

2019

The authors are grateful to Baker Hughes a GE Company for support of this activity. This work has also been supported by grant N14.W03.31.0004 from the Government of the Russian Federation.

Materials sciencedisordered crystal02 engineering and technologyNanoengineeringscintillatorsScintillator01 natural sciencesIonizing radiation0103 physical sciences:NATURAL SCIENCES:Physics [Research Subject Categories]luminescenceGeneral Materials Scienceco-precipitation010302 applied physicsScintillationbusiness.industryDetectormulticomponent garnetGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsOptoelectronicsnanoengineering0210 nano-technologybusinessLuminescence
researchProduct

Electromagnetic calorimetry with PbWO/sub 4/ in the energy regime below 1 GeV

2003

The study of the performance and application of PbWO/sub 4/ in electromagnetic calorimetry at energies far below 1 GeV has been continued. The significantly improved optical and scintillation properties of 15 cm long Nb/La-doped crystals, optimized for the ECAL/CMS calorimeter, are documented. The lineshape, energy and time response of a 5/spl times/5 matrix are tested with monoenergetic photons up to 790 MeV energy and compared to previous measurements. First attempts have been made to enhance the scintillation yield by suitable dopants (Mo,Tb) for applications at very low photon energies. As a first large scale project at medium energies, the proposed concept for a compact photon spectrom…

PhysicsNuclear and High Energy PhysicsScintillationPhotonSpectrometerPhysics::Instrumentation and DetectorsNiobiumchemistry.chemical_elementCalorimetryCalorimeterNuclear physicsNuclear Energy and EngineeringchemistryElectrical and Electronic EngineeringNuclear ExperimentSpectroscopyPhotonic crystal1999 IEEE Nuclear Science Symposium. Conference Record. 1999 Nuclear Science Symposium and Medical Imaging Conference (Cat. No.99CH37019)
researchProduct