0000000000217528
AUTHOR
Andrei Fedorov
Excitation Transfer Engineering in Ce-Doped Oxide Crystalline Scintillators by Codoping with Alkali-Earth Ions
This work has been supported by the European Social Fund Measure No. 09.3.3-LMT-K-712 activity Improvement of Researchers Qualification by Implementing the World-Class R&D Projects, and by grant #14.W03.31.0004 of the Russian Federation Government. Authors are grateful to CERN Crystal Clear Collaboration and COST Action TD1401 "Fast Advanced Scintillator Timing (FAST)" for support of collaboration.
Models and data analysis tools for the Solar Orbiter mission
All authors: Rouillard, A. P.; Pinto, R. F.; Vourlidas, A.; De Groof, A.; Thompson, W. T.; Bemporad, A.; Dolei, S.; Indurain, M.; Buchlin, E.; Sasso, C.; Spadaro, D.; Dalmasse, K.; Hirzberger, J.; Zouganelis, I.; Strugarek, A.; Brun, A. S.; Alexandre, M.; Berghmans, D.; Raouafi, N. E.; Wiegelmann, T.; Pagano, P.; Arge, C. N.; Nieves-Chinchilla, T.; Lavarra, M.; Poirier, N.; Amari, T.; Aran, A.; Andretta, V.; Antonucci, E.; Anastasiadis, A.; Auchère, F.; Bellot Rubio, L.; Nicula, B.; Bonnin, X.; Bouchemit, M.; Budnik, E.; Caminade, S.; Cecconi, B.; Carlyle, J.; Cernuda, I.; Davila, J. M.; Etesi, L.; Espinosa Lara, F.; Fedorov, A.; Fineschi, S.; Fludra, A.; Génot, V.; Georgoulis, M. K.; Gilbe…
Feasibility study for the measurement of πN transition distribution amplitudes at P¯ANDA in p¯p→J/ψπ0
The exclusive charmonium production process in (P) over barp annihilation with an associated pi 0 meson (p) over barp -> J/psi pi(0) is studied in the framework of QCD collinear factorization. The feasibility of measuring this reaction through the J/psi -> e(+) e(-) decay channel with the AntiProton ANnihilation at DArmstadt ((P) over bar ANDA) experiment is investigated. Simulations on signal reconstruction efficiency as well as the background rejection from various sources including the (P) over barp -> pi(+)pi(-)pi(0) and (p) over barp -> J/psi pi(0)pi(0) reactions are performed with PANDAROOT, the simulation and analysis software framework of the (P) over bar ANDA experiment. It is show…
Nanoengineered Gd3Al2Ga3O12 Scintillation Materials with Disordered Garnet Structure for Novel Detectors of Ionizing Radiation
The authors are grateful to Baker Hughes a GE Company for support of this activity. This work has also been supported by grant N14.W03.31.0004 from the Government of the Russian Federation.
Radiation damage of heavy crystalline detector materials by 24GeV protons
Abstract Samples of three heavy crystalline materials: PbWO4, Bi4Si3O12, and PbF2 were irradiated in a high-intensity 24 GeV proton beam at the CERN PS to fluencies of 3.8×1013 protons/cm2. The optical transmission radiation damage was measured and all crystals show a shift of the cutoff in the transmission spectrum that is not observed when the crystals are irradiated with γ radiation. This shift of the cutoff under proton irradiation seems to be a general property of the heavy crystalline materials. A mechanism for this proton-induced transmission damage is discussed.