0000000000217664
AUTHOR
Matthias R. Schindler
Power counting in baryon chiral perturbation theory including vector mesons
It is demonstrated that using a suitable renormalization condition one obtains a consistent power counting in manifestly Lorentz-invariant baryon chiral perturbation theory including vector mesons as explicit degrees of freedom.
Chiral expansion of the nucleon mass to order q^6
We present the results of a complete two-loop calculation at order q^6 of the nucleon mass in manifestly Lorentz-invariant chiral perturbation theory. The renormalization is performed using the reformulated infrared renormalization, which allows for the treatment of two-loop integrals while preserving all relevant symmetries, in particular chiral symmetry.
Axial, induced pseudoscalar, and pion-nucleon form factors in manifestly Lorentz-invariant chiral perturbation theory
We calculate the nucleon form factors G_A and G_P of the isovector axial-vector current and the pion-nucleon form factor G_piN in manifestly Lorentz-invariant baryon chiral perturbation theory up to and including order O(p^4). In addition to the standard treatment including the nucleon and pions, we also consider the axial-vector meson a_1 as an explicit degree of freedom. This is achieved by using the reformulated infrared renormalization scheme. We find that the inclusion of the axial-vector meson effectively results in one additional low-energy coupling constant that we determine by a fit to the data for G_A. The inclusion of the axial-vector meson results in an improved description of t…
Infrared renormalization of two-loop integrals and the chiral expansion of the nucleon mass
We describe details of the renormalization of two-loop integrals relevant to the calculation of the nucleon mass in the framework of manifestly Lorentz-invariant chiral perturbation theory using infrared renormalization. It is shown that the renormalization can be performed while preserving all relevant symmetries, in particular chiral symmetry, and that renormalized diagrams respect the standard power counting rules. As an application we calculate the chiral expansion of the nucleon mass to order O(q^6).
Improving the ultraviolet behavior in baryon chiral perturbation theory
We introduce a new formulation of baryon chiral perturbation theory which improves the ultraviolet behavior of propagators and can be interpreted as a smooth cutoff regularization scheme. It is equivalent to the standard approach, preserves all symmetries and therefore satisfies the Ward identities. Our formulation is equally well defined in the vacuum, one- and few-nucleon sectors of the theory. The equations (Bethe-Salpeter, Lippmann-Schwinger, etc.) for the scattering amplitudes of the few-nucleon sector are free of divergences in the new approach. Unlike the usual cutoff regularization, our 'cutoffs' are parameters of the Lagrangian and do not have to be removed.
Infrared and extended on-mass-shell renormalization of two-loop diagrams
Using a toy model Lagrangian we demonstrate the application of both infrared and extended on-mass-shell renormalization schemes to multiloop diagrams by considering as an example a two-loop self-energy diagram. We show that in both cases the renormalized diagrams satisfy a straightforward power counting.
Quantum electrodynamics for vector mesons
Quantum electrodynamics for $\rho$ mesons is considered. It is shown that, at tree level, the value of the gyromagnetic ratio of the $\rho^+$ is fixed to 2 in a self-consistent effective quantum field theory. Further, the mixing parameter of the photon and the neutral vector meson is equal to the ratio of electromagnetic and strong couplings, leading to the mass difference $M_{\rho^0}-M_{\rho^\pm}\sim 1 {\rm MeV}$ at tree order.
Infrared regularization of baryon chiral perturbation theory reformulated
We formulate the infrared regularization of Becher and Leutwyler in a form analogous to our recently proposed extended on-mass-shell renormalization. In our formulation, IR regularization can be applied straightforwardly to multi-loop diagrams with an arbitrary number of particles with arbitrary masses.
Universality of the rho-meson coupling in effective field theory
It is shown that both the universal coupling of the rho-meson and the Kawarabayashi-Suzuki-Riadzuddin-Fayyazuddin expression for the magnitude of its coupling constant follow from the requirement that chiral perturbation theory of pions, nucleons, and rho-mesons is a consistent effective field theory. The prerequisite of the derivation is that all ultraviolet divergences can be absorbed in the redefinition of fields and the available parameters of the most general effective Lagrangian.