0000000000217927
AUTHOR
Zachary P. L. Laker
Adiabatic versus non-adiabatic electron transfer at 2D electrode materials
2D electrode materials are often deployed on conductive supports for electrochemistry and there is a great need to understand fundamental electrochemical processes in this electrode configuration. Here, an integrated experimental-theoretical approach is used to resolve the key electronic interactions in outer-sphere electron transfer (OS-ET), a cornerstone elementary electrochemical reaction, at graphene as-grown on a copper electrode. Using scanning electrochemical cell microscopy, and co-located structural microscopy, the classical hexaamineruthenium (III/II) couple shows the ET kinetics trend: monolayer > bilayer > multilayer graphene. This trend is rationalized quantitatively through th…
Adiabatic versus Non-Adiabatic Electron Transfer at 2D Electrode Materials
<div><div><div><p>Outer-sphere electron transfer (OS-ET) is a cornerstone elementary electrochemical reaction, yet microscopic understanding is largely based on idealized theories, developed in isolation from experiments that themselves are often close to the kinetic (diffusion) limit. Focusing on graphene as-grown on a copper substrate as a model 2D material/metal-supported electrode system, this study resolves the key electronic interactions in OS-ET, and identifies the role of graphene in modulating the electronic properties of the electrode/electrolyte interface. An integrated experimental-theoretical approach combining co-located multi-microscopy, centered on sc…