0000000000218527

AUTHOR

Nicole A. Hofmann

Epigenetic and in vivo comparison of diverse MSC sources reveals an endochondral signature for human hematopoietic niche formation

In the last decade there has been a rapid expansion in clinical trials using mesenchymal stromal cells (MSCs) from a variety of tissues. However, despite similarities in morphology, immunophenotype, and differentiation behavior in vitro, MSCs sourced from distinct tissues do not necessarily have equivalent biological properties. We performed a genome-wide methylation, transcription, and in vivo evaluation of MSCs from human bone marrow (BM), white adipose tissue, umbilical cord, and skin cultured in humanized media. Surprisingly, only BM-derived MSCs spontaneously formed a BM cavity through a vascularized cartilage intermediate in vivo that was progressively replaced by hematopoietic tissue…

research product

Organotypic Epigenetic Signature Predicts Bone and Marrow Niche Forming Capacity of Stromal Progenitors in a Novel Mouse Model in Vivo.

Abstract Abstract 2987 Mesenchymal stem/progenitor cells (MSPCs) from numerous tissues are currently tested in clinical trials despite a limited understanding of their in vivo behavior. In this study we used MSPCs from adult and fetal tissues to select the appropriate source for clinical application. We asked whether MSPCs derived from human bone marrow (BM), white adipose tissue (WAT) and umbilical cord (UC), compared to skin fibroblasts, bear an equivalent bone and marrow niche formation potential with of in vivo. Furthermore we evaluated attraction and engraftment of murine as well as human hematopoietic stem/progenitor cells (HSPCs) into newly formed MSPC-derived niches. To elucidate po…

research product