0000000000218819
AUTHOR
Sabine Pahler
Neuroactive compounds produced by bacteria from the marine sponge Halichondria panicea: activation of the neuronal NMDA receptor
Abstract Previous studies revealed that the marine sponge Halichondria panicea habors symbiotic- and commensalic bacteria ( Althoff et al., 1998 . Marine Biol. 130, 529–536). In the present study the hypothesis was tested whether some of those bacteria synthesize neuroactive compounds. For the first time the effect of bacterial bioactive compounds on the neuronal ionotropic glutamate receptors [iGluR], subtype N -methyl- d -aspartate (NMDA) receptor, was checked. In cortical neurons from rats as cell system the supernatant of two bacterial cultures isolated from H. panicea proved to agonize the NMDA receptor. The response of the NMDA receptor to the bioactive compounds was determined by mea…
Putative multiadhesive protein from the marine spongeGeodia cydonium: Cloning of the cDNA encoding a fibronectin-, an SRCR-, and a complement control protein module†
Sponges (Porifera) representing the simplest metazoan phylum so far have been thought to possess no basal lamina tissue structures. One major extracellular matrix protein that is also a constitutive glycoprotein of the basal lamina is fibronectin. It was the aim of the present study to identify the native protein from the marine sponge Geodia cydonium and to isolate the corresponding cDNA. In crude extracts from this sponge protein(s) of Mr of Ý230 and Ý210 kDa could be visualized by Western blotting using an anti-fibronectin [human] antibody. By PCR cloning from a cDNA library of G. cydonium we isolated a cDNA comprising one element of fibronectin, the type-III (FN3) module. The cDNA (2.3 …
Isolation and characterization of a cDNA encoding a potential morphogen from the marine sponge Geodia cydonium that is conserved in higher metazoans.
Species belonging to the lowest metazoan phylum, the sponges (Porifera), exhibit a surprisingly complex and multifaceted Bauplan (body plan). Recently, key molecules have been isolated from sponges which demonstrate that the cells of these animals are provided with characteristic metazoan adhesion and signal transduction molecules, allowing tissue formation. In order to understand which factors control the spatial organization of these cells in the sponge body plan, we screened for a cDNA encoding a soluble modulator of the behaviour of endothelial cells. A cDNA encoding a putative protein, which is highly similar to the human and mouse endothelial monocyte-activating polypeptide (EMAP) II …
Stimulation of protein (collagen) synthesis in sponge cells by a cardiac myotrophin‐related molecule from Suberites domuncula
The body wall of sponges (Porifera), the lowest metazoan phylum, is formed by two epithelial cell layers of exopinacocytes and endopinacocytes, both of which are associated with collagen fibrils. Here we show that a myotrophin-like polypeptide from the sponge Suberites domuncula causes the expression of collagen in cells from the same sponge in vitro. The cDNA of the sponge myotrophin was isolated; the potential open reading frame of 360 nt encodes a 120 aa long protein (Mr of 12,837). The sequence SUBDOMYOL shares high similarity with the known metazoan myotrophin sequences. The expression of SUBDOMYOL is low in single cells but high after formation of primmorph aggregates as well as in in…