Missing Value Estimation for Microarray Data by Bayesian Principal Component Analysis and Iterative Local Least Squares
Published version of an article from the journal: Mathematical Problems in Engineering. Also available from Hindawi: http://dx.doi.org/10.1155/2013/162938 Missing values are prevalent in microarray data, they course negative influence on downstream microarray analyses, and thus they should be estimated from known values. We propose a BPCA-iLLS method, which is an integration of two commonly used missing value estimation methods-Bayesian principal component analysis (BPCA) and local least squares (LLS). The inferior row-average procedure in LLS is replaced with BPCA, and the least squares method is put into an iterative framework. Comparative result shows that the proposed method has obtaine…