0000000000218867
AUTHOR
Arpad Jakab
Light-controlled one-sided growth of large plasmonic gold domains on quantum rods observed on the single particle level
We create large gold domains (up to 15 nm) exclusively on one side of CdS or CdSe/CdS quantum rods by photoreduction of gold ions under anaerobic conditions. Electrons generated in the semiconductor by UV stimulation migrate to one tip where they reduce gold ions. Large gold domains eventually form; these support efficient plasmon oscillations with a light scattering cross section large enough to visualize single hybrid particles in a dark-field microscope during growth in real time.
Plasmonic nanosensors reveal a height dependence of MinDE protein oscillations on membrane features
6 p.-4 fig.
Highly Sensitive plasmonic silver nanorods
We compare the single-particle plasmonic sensitivity of silver and gold nanorods with similar resonance wavelengths by monitoring the plasmon resonance shift upon changing the environment from water to 12.5% sucrose solution. We find that silver nanoparticles have 1.2 to 2 times higher sensitivity than gold, in good agreement with simulations based on the boundary-elements-method (BEM). To exclude the effect of particle volume on sensitivity, we test gold rods with increasing particle width at a given resonance wavelength. Using the Drude-model of optical properties of metals together with the quasi-static approximation (QSA) for localized surface plasmons, we show that the dominant contrib…
Plasmonic Focusing Reduces Ensemble Linewidth of Silver-Coated Gold Nanorods
Silver coating gold nanorods reduces the ensemble plasmon line width by changing the relation connecting particle shape and plasmon resonance wavelength. This change, we term "plasmonic focusing", leads to less variation of resonance wavelengths for the same particle size distribution. We also find smaller single particle linewidth comparing resonances at the same wavelength but show that this does not contribute to the ensemble linewidth narrowing.
Plasmonic Silver Nanorod Sensitivity: Experiment and Simple Theoretical Treatment
We compare the plasmonic sensitivity of silver and gold nanorods with similar resonance wavelengths by monitoring the plasmon resonance shift of single noble metal nanorods upon changing the environment from water to sucrose solution. We find that silver nanorods have 1.2 to 2 times higher sensitivity than gold in good agreement with simulations based on the boundary-elements-method (BEM). To exclude the effect of particle volume on sensitivity, we test gold rods with increasing particle width at a given resonance wavelength. Using the Drude-model of optical properties of metal together with the quasi-static approximation (QSA) for localized surface plas-mons, we show that the dominant cont…