0000000000218905
AUTHOR
Uwe Kahmann
The Proteome and Lipidome of Synechocystis sp. PCC 6803 Cells Grown under Light-Activated Heterotrophic Conditions*
Cyanobacteria are photoautotrophic prokaryotes with a plant-like photosynthetic machinery. Because of their short generation times, the ease of their genetic manipulation, and the limited size of their genome and proteome, cyanobacteria are popular model organisms for photosynthetic research. Although the principal mechanisms of photosynthesis are well-known, much less is known about the biogenesis of the thylakoid membrane, hosting the components of the photosynthetic, and respiratory electron transport chain in cyanobacteria. Here we present a detailed proteome analysis of the important model and host organism Synechocystis sp. PCC 6803 under light-activated heterotrophic growth condition…
Thylakoid Membrane Maturation and PSII Activation Are Linked in Greening Synechocystis sp. PCC 6803 Cells
Abstract Thylakoid membranes are typical and essential features of both chloroplasts and cyanobacteria. While they are crucial for phototrophic growth of cyanobacterial cells, biogenesis of thylakoid membranes is not well understood yet. Dark-grown Synechocystis sp. PCC 6803 cells contain only rudimentary thylakoid membranes but still a relatively high amount of phycobilisomes, inactive photosystem II and active photosystem I centers. After shifting dark-grown Synechocystis sp. PCC 6803 cells into the light, “greening” of Synechocystis sp. PCC 6803 cells, i.e. thylakoid membrane formation and recovery of photosynthetic electron transport reactions, was monitored. Complete restoration of a t…