Calcium silicate hydrates: Solid and liquid phase composition
© 2015 Elsevier Ltd. This paper presents a review on the relationship between the composition the structure and the solution in which calcium silicate hydrate (C S H) is equilibrated. The silica chain length in C S H increases with the silicon concentration and the calcium content in the interlayer space with the calcium concentrations. Sodium and potassium are taken up in the interlayer space preferentially at low calcium concentrations and thus by low Ca/Si C S H. Aluminium uptake in C S H increases strongly at higher aluminium concentrations in the solution. At low Ca/Si aluminium substitutes silica in the bridging position at Ca/Si. > 1 aluminium is bound in TAH. Recently developed ther…
Impact of gluconate and hexitol additives on the precipitation mechanism and kinetics of C-S-H
The present paper investigates the influence of gluconate and hexitol additives on the precipitation mechanism and kinetics of C-S-H. To this end, wet chemistry C-S-H precipitation experiments were performed under controlled conditions of solution supersaturation, under varying silicate concentration, while the transmittance of the solution was followed. This allowed determining induction times for the formation of C-S-H precursors in the presence and absence of gluconate and three hexitol molecules. Characterization of the precipitates was performed via small angle X-ray scattering and cryo-transmission electron microscopy experiments, which allowed the identification of a multi-step nucle…
Gluconate and hexitols effects on C-S-H solubility
This study investigates the effect of gluconate, a carboxylate ion, and three uncharged hexitols, D-sorbitol, D-mannitol and D-galactitol on the solubility of C-S-H. Thermodynamic modeling was used to determine the kind and amount of Ca-organic-silicate-OH complexes that potentially form in the conditions studied. All the organics form complexes with calcium and hydroxide, In addition, heteropolynuclear organics complexes with calcium, hydroxide and silicate are observed at high pH values and high calcium concentrations with the exception of mannitol. The strength of complexation with silicate decreases from gluconate > sorbitol > galactitol. The adsorption of the selected organics on…
Portlandite solubility and Ca 2+ activity in presence of gluconate and hexitols
The current paper investigates the impact of gluconate, D-sorbitol, D-mannitol and D-galactitol on calcium speciation at high pH values by i) solubility measurements of portlandite (Ca(OH)2) and ii) potentiometric titration measurements of calcium salt solutions. Thermodynamic modeling was used to fit the chemical activities of Ca2+ and OH- ions and thus to determine the strength and kind of the different Ca-organic-hydroxide complexes. The strength of complex formation with Ca decreases in the order gluconate >> sorbitol > mannitol > galactitol, which follows the same order as sorption on portlandite. Heteropolynuclear gluconate complexes with calcium and hydroxide dominate the…