0000000000219066

AUTHOR

M. Cochez

showing 3 related works from this author

Measuring Semantic Coherence of a Conversation

2018

Conversational systems have become increasingly popular as a way for humans to interact with computers. To be able to provide intelligent responses, conversational systems must correctly model the structure and semantics of a conversation. We introduce the task of measuring semantic (in)coherence in a conversation with respect to background knowledge, which relies on the identification of semantic relations between concepts introduced during a conversation. We propose and evaluate graph-based and machine learning-based approaches for measuring semantic coherence using knowledge graphs, their vector space embeddings and word embedding models, as sources of background knowledge. We demonstrat…

FOS: Computer and information sciencesWord embeddingComputer scienceComputer Science - Artificial Intelligencemedia_common.quotation_subjectihmisen ja tietokoneen vuorovaikutus02 engineering and technologycomputer.software_genrekeskustelu020204 information systems0202 electrical engineering electronic engineering information engineeringConversationconversational systemsmedia_commonComputer Science - Computation and Languagebusiness.industrykoneoppiminenArtificial Intelligence (cs.AI)Knowledge graphsemantiikkaGraph (abstract data type)020201 artificial intelligence & image processingArtificial intelligencebusinesssemantic coherencecomputerComputation and Language (cs.CL)Natural language processing
researchProduct

Towards a FAIR Sharing of Scientific Experiments: Improving Discoverability and Reusability of Dielectric Measurements of Biological Tissues

2018

metadatascientific datadielectric measurementsmetadata managementFAIR data principlessemanttinen webtutkimusaineistoavoin tieto
researchProduct

Structured query construction via knowledge graph embedding

2020

In order to facilitate the accesses of general users to knowledge graphs, an increasing effort is being exerted to construct graph-structured queries of given natural language questions. At the core of the construction is to deduce the structure of the target query and determine the vertices/edges which constitute the query. Existing query construction methods rely on question understanding and conventional graph-based algorithms which lead to inefficient and degraded performances facing complex natural language questions over knowledge graphs with large scales. In this paper, we focus on this problem and propose a novel framework standing on recent knowledge graph embedding techniques. Our…

FOS: Computer and information sciencesComputer Science - Machine LearningComputer Science - Computation and LanguageComputer Science - Artificial Intelligenceknowledge graph embeddingnatural language question answeringkyselykieletMachine Learning (cs.LG)luonnollinen kieliArtificial Intelligence (cs.AI)knowledge graphquery constructionComputation and Language (cs.CL)tietomallit
researchProduct