0000000000219119
AUTHOR
Kumar Mallikarjunan
Application of plant extracts to improve the shelf-life, nutritional and health-related properties of ready-to-eat meat products.
Plant extracts are increasingly becoming important additives in food industry due to their antimicrobial and antioxidant abilities that delay the development of off-flavors and improve the color stability in ready-to-eat (RTE) meat products. Due to their natural origin, they are excellent candidates to replace synthetic molecules, which are generally considered to have toxicological and carcinogenic effects. The efficient extraction of these antioxidant molecules from their natural sources, along with the determination of their activity in the commercialized products, have been a great challenge for researchers and food chain contributors. The objective of this review is to highlight the ap…
An integrated strategy between gastronomic science, food science and technology, and nutrition in the development of healthy food products
Abstract The development and introduction of healthier products into the marketplace is an important topic of discussion. Three main knowledge areas are involved: gastronomy, food science and technology, and nutrition. The many intersections among these areas are essential since the digestion of nutrients and bioactive compounds can be influenced by thermal food processing and preparation. Conversely, nonthermal technologies are interesting alternatives to reduce and even prevent the loss of nutrients and bioactive compounds from foods. However, at this stage of development little is known about the impact of these innovative nonthermal technologies on the subsequent bioaccessibility and bi…
Bridging the Knowledge Gap for the Impact of Non-Thermal Processing on Proteins and Amino Acids
Proteins represent one of the major food components that contribute to a wide range of biophysical functions and dictate the nutritional, sensorial, and shelf-life of food products. Different non-thermal processing technologies (e.g., irradiation, ultrasound, cold plasma, pulsed electric field, and high-pressure treatments) can affect the structure of proteins, and thus their solubility as well as their functional properties. The exposure of hydrophobic groups, unfolding followed by aggregation at high non-thermal treatment intensities, and the formation of new bonds have been reported to promote the modification of structural and functional properties of proteins. Several studies reported …
Innovative technologies for the recovery of phytochemicals from Stevia rebaudiana Bertoni leaves: A review.
Stevia rebaudiana Bertoni has gained increased industrial and scientific interests in the last 20 years, representing a suitable nutritional alternative to sucrose and artificial sweeteners. Moreover, this plant contains polyphenols, chlorophylls, and carotenoids that may be extracted for production of nutraceuticals and functional foods. Because of nutritional and technological advantages over sucrose, innovative approaches for the extraction of highly valued compounds from Stevia leaves have been developed and optimized. In contrast to conventional alternatives, innovative extraction methods allow higher yields in a shorter time, less usage of organic solvents, and reduced energy consumpt…
Innovative food processing technologies on the transglutaminase functionality in protein-based food products: Trends, opportunities and drawbacks
Abstract Background Consumption of protein-based food products has a key role in the improvement of human health. The crosslinking agent microbial transglutaminase (mTGase) is an effective and promising tool to modify animal proteins used in the food industry. Improvement in the gelation process, physicochemical and textural quality, and consumer's demand of protein-based food products could be attained by combining mTGase and some non-conventional food processing technologies. Scope and approach New perspectives and key areas for future research in the development of high-quality food proteins and protein-based products as a function of interaction effect of mTGase and some new processing …
Effect of Innovative Food Processing Technologies on the Physicochemical and Nutritional Properties and Quality of Non-Dairy Plant-Based Beverages
Increase in allergenicity towards cow’s milk, lactose intolerance, the prevalence of hypercholesterolemia, and flexitarian choice of food consumption have increased the market for cow’s milk alternatives. Non-dairy plant-based beverages are useful alternatives because of the presence of bioactive components with health-promoting properties, which attract health-conscious consumers. However, the reduced nutritional value and sensory acceptability of the plant-based beverages (such as flavor, taste, and solubility) compared to cow’s milk pose a big threat to its place in the market. Thermal treatments are commonly used to ensure the quality of plant-based beverages during storage. However, th…
An overview of organosulfur compounds from Allium spp.: From processing and preservation to evaluation of their bioavailability, antimicrobial, and anti-inflammatory properties
The use of Allium species and their extracts has been known since immemorial times due to their health beneficial properties. It is known that functional properties of Allium genus come from the high content of bioactive compounds. The biological activity of Allium extracts will be conditioned by the type of Allium variety, agricultural conditions, and specific extraction process used since all these factors affect the content and the profile of bioactive compounds. Innovative extraction techniques in comparison to conventional processes could be considered as a promising tool to recover bioactive compounds from Allium spp. with antimicrobial and anti-inflammatory properties. Trying to fill…
High pressure processing of food-grade emulsion systems: Antimicrobial activity, and effect on the physicochemical properties
Abstract The use of high pressure processing (HPP) for development of stable emulsion-based delivery systems has been recently increased. Under adequate conditions, application of high pressures modifies the functionality of protein and polysaccharide molecules and significantly promotes the emulsifying activities. Application of high pressures also modulates the emulsion microstructure without any destabilization and gelation of protein molecules. The lipid oxidation in HPP-treated emulsions can be accelerated, particularly with higher pressure levels, while the HPP utilization on emulsions in acidic conditions can highly inhibit the growth of spoilage and pathogenic microorganisms. In thi…