0000000000219141

AUTHOR

Angus Buckling

0000-0003-1170-4604

Targeting antibiotic resistant bacteria with phage reduces bacterial density in an insect host

Phage therapy is attracting growing interest among clinicians as antibiotic resistance continues becoming harder to control. However, clinical trials and animal model studies on bacteriophage treatment are still scarce and results on the efficacy vary. Recent research suggests that using traditional antimicrobials in concert with phage could have desirable synergistic effects that hinder the evolution of resistance. Here, we present a novel insect gut model to study phage–antibiotic interaction in a system where antibiotic resistance initially exists in very low frequency and phage specifically targets the resistance bearing cells. We demonstrate that while phage therapy could not reduce th…

research product

Targeting antibiotic resistant bacteria with phages reduces bacterial density in an insect host

Phage therapy is attracting growing interest among clinicians as antibiotic resistance continues becoming harder to control. However, clinical trials and animal model studies on bacteriophage treatment are still scarce and results on the efficacy vary. Recent research suggests that using traditional antimicrobials in concert with phage could have desirable synergistic effects that hinder the evolution of resistance. Here, we present a novel insect gut model to study phage-antibiotic interaction in a system where antibiotic resistance initially exists in very low frequency and phage specifically targets the resistance bearing cells. We demonstrate that while phage therapy could not reduce th…

research product

Bacteriophage selection against a plasmid-encoded sex apparatus leads to the loss of antibiotic-resistance plasmids.

Antibiotic-resistance genes are often carried by conjugative plasmids, which spread within and between bacterial species. It has long been recognized that some viruses of bacteria (bacteriophage; phage) have evolved to infect and kill plasmid-harbouring cells. This raises a question: can phages cause the loss of plasmid-associated antibiotic resistance by selecting for plasmid-free bacteria, or can bacteria or plasmids evolve resistance to phages in other ways? Here, we show that multiple antibiotic-resistance genes containing plasmids are stably maintained in bothEscherichia coliandSalmonella entericain the absence of phages, while plasmid-dependent phage PRD1 causes a dramatic reduction i…

research product

Data from: Targeting antibiotic resistant bacteria with phages reduces bacterial density in an insect host

Phage therapy is attracting growing interest among clinicians as antibiotic resistance continues becoming harder to control. However, clinical trials and animal model studies on bacteriophage treatment are still scarce and results on the efficacy vary. Recent research suggests that using traditional antimicrobials in concert with phage could have desirable synergistic effects that hinder the evolution of resistance. Here, we present a novel insect gut model to study phage-antibiotic interaction in a system where antibiotic resistance initially exists in very low frequency and phage specifically targets the resistance bearing cells. We demonstrate that while phage therapy could not reduce th…

research product